重难点 抽象函数及其应用(解析版)_第1页
重难点 抽象函数及其应用(解析版)_第2页
重难点 抽象函数及其应用(解析版)_第3页
重难点 抽象函数及其应用(解析版)_第4页
重难点 抽象函数及其应用(解析版)_第5页
已阅读5页,还剩26页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

A.(-2,0(∪(0,2(B.(-1,3(C.(-3,0(∪(0,1(D.(-1,0(∪(0,3(A.函数y=2x+、x-1的值域为[2,+∞(B.函数f(x(=tanx的值域为RC.函数f(x(=ex-1与g(x是同一个函数D.若函数f(x-1(的定义域为[1,4[,则函数f(2x(的定义域为[0,2[又函数y=2x+、x-1在[1,+∞(上单调递增,所以y≥2×1+、1-1=2,1122所以函数y=2x+、x-1的值域为[2,+∞(,故A正确;令t=tanx≠0,则y=t-,所以函数f(x(=tanx的值域为R,故B正确;又g(xex-1,所以函数f(2x(的定义域为(-∞,log23[,选项D错误.有f(f(x(-log2x(=3,则f(22025)-2的值是()【分析】由函数f(x)在定义域(0,+∞)上是单调函数,且f(f(x)-log2x)=3,知f(x)-log2x是一个常-2的值.【详解】由函数f(x)在定义域(0,+∞)上是单调知f(x)-log2x是一个常数,令f(x)-log2x=t,则f(x)=t+log2x,∴f(t)=t+log2t=3,f(x(=x(2-x(,则f(9(=;x∈(-4,-2[时,f(x(=.【答案】16-(x+2((x+4(=f(x+4(,即可得解.33则f(9(=2f(7(=4f(5(=8f(3(=16f(1(=16×1×(2-1(=16;则f(x(=f(x+2(=f(x+4(=(x+4((2-(x+4((=-(x+2((x+4(.故答案为:16;-(x+2((x+4(5.(24-25高二下·广东云浮·期末)已知函数f(x(的定义域为R,满足f(x+y(>f(x(.f(y(,且f(1(=A.f(10(>104B.f(20(>106C.f(10(<104D.f(20(<106【详解】令y=1,则f(x+1(>f(x(.f(1(=2f(x(,f(y(+1=f(x+y(,则()A.f(-2(=-3B.f(2025(=2024C.f(x(有最大值D.f(x(+1是奇函数f(x(=x-1可排除C,设g(x(=f(x(+1,则g(x(+g(y(=g(x+y(,令y=-x即可证明函数g(x(=f(x(+1是奇函数.f(0(+f(0(+1=f(0+0(,解得f(0(=-1,对于A,令x=1,y=-1,则f(1(+f(-1(+1=f(1-1(,解得f(-1(=-2,令x=-1,y=-1,则f(-1(+f(-1(+1=f(-1-1(,解得f(-2(=-3,故A正确;对于B,令y=1,则f(x+1(=f(x(+f(1(+1=f(x(+1,对于C,设函数f(x(=x-1,此时f(1(=0,f(x(+f(y(+1=x-1+y-1+1=(x+y(-1=f(x+y(,符合题意;对于D,设g(x(=f(x(+1,因为∀x∈R,有f(x(+f(y(+1=f(x+y(,即∀x∈R,有f(x(+1+f(y(+1=f(x+y(+1,令y=-x,则g(x(+g(-x(=g(0(=f(0(+1=0,所以函数g(x(是奇函数,44f(x(f(y(,且f(1(=2,则++…+=()7.(23-24高一上·广东江门·期末)已知函数f(x(的定义域为R,对于任意实数x,y满足f(x+y(f(x(f(y(,且f(1(=2,则++…+=()f(1(f(3(f(2023(【详解】对于任意实数x,y满足f(x+y(=f(x(f(y(,所以当y=1时,f(x+1)=f(x)f(1)=2f(x),8.(24-25高一上·广东佛山·期末)已知定义在R上的函数f(x(满足f(x+y且当x>A.奇函数,在(0,+∞(上单调递增B.奇函数,在(0,+∞(上单调递减令y=-x,则f得f(-x)=-f(x),则函数f(x)为奇函数,设x1,x2<x22-x1>0,则0<f(x2-x1(<1, f(x2-x1)+f(x1)则f(x1(-f(x2(=f(x1(-f(x2-x1+x1(=f(x1(-1+ f(x2-x1)+f(x1)得f(x1(-f(x2(<0,得f(x1(<f(x2(,故函数f(x)在(0,+∞(上单调递增.559.【多选】(23-24高三上·广东汕头·期末)已知定义在(0,+∞(上的函数f(x(满足:∀x,y∈(0,+∞(,f(x(+f(y(=f(xy(,且当0<x<1时,f(x(<0,若f(2(=1,则()A.f(1(=0B.f(x(在(0,+∞(上单调递减C.|f(x(|=|fD.f(2(+f(22(+…+f(220(=55=f(x(+f(xn-1(,从而利用累加法与等差数列的求和公式可判断D.f(x(+f(y(=f(xy(,对于C,令y=,得f(x(+f=f(1(=0,则f(x(=-f,则f(x1(-f(x2(=f(x2.2(=f+f(x2(-f(x2(=f,因为当0<x<1时,f(x(<0,所以f<0,即f(x1(所以f(x(在(0,+∞(上单调递增,故B错误;对于D,令y=xn-1,得f(xn(=f(x(+f(xn-1(,则f(x2(=f(x(+f(x(,f(x3(=f(x(+f(x2(,…,f(xn(=f(x(+f(xn-1(,上述各式相加,得f(xn(=(n-1(f(x(+f(x(=nf(x(,又f(2(=1,所以f(2(+f(22(+…+f(220(=(1+2…+20(f(2(==210,故D错误;10.(23-24高一上·广东珠海·期末)已知定义在R上的函数f(x(满足f(xy(=f(x(f(y(-f(x(-f(y(+f(0(<f(1(,且f(x(>0.(1)求f(-1(的值;【答案】(1)f(-1(=2令x=y=1,得f(1(=[f(1([2-2f(1(+2,66令x=y=-1,得f(1(=[f(-1([2-2f(-1(+2,即[f(-1([2=2f(-1(,因为f(x(>0,所以f(-1(>0,所以f(-1(=2.(2)f(x(为偶函数.证明如下:令y=-1,得f(-x(=f(-1(f(x(-f(-1(-f(x(+2,由(1)得f(-x(=2f(x(-2-f(x(+2,即f(-x(=f(x(,又f(x(的定义域为R,所以f(x(为偶函数.f(ab(=af(b(+bf(a(,若f(3(=2,则f(-1(+f(-)A.BC.当a=b=-1时,f(1(=-2f(-1(,可得f(-1(=0,函数f(x(是定义在R上且不恒为零的函数,令a=-1,b=x,可得f(-x(=-f(x(+xf(-1(=-f(x(,则函数f(x(是奇函数,f+f(3(=0,得f=-,所以f(-=,所以f(-1(+f(-=.12.(24-25高一上·广东深圳·期末f(x(=x+1,则f(5(=(A.-2B.0C.2D.6【详解】因为函数f(x(是定义在R上的周期为4所以f(5(=f(-5(=f(-1(,所以f(5(=f(-1(=0,7713.(24-25高二下·广东深圳·期末)定义在R上的奇函数f(x(满足f(2-x(=f(x(,且f(11(+f(10(=-1,则f(1(=.【分析】由已知得出f(x(周期为4,f(0(=f(2(=0,再由f(11(+f(10(=-1即可求解.【详解】因为f(x(=f(2-x(=-f(x-2)=f(x-4),所以f(x(周期为4,又f(x(是定义在R上的奇函数,所以f(0(=f(2(=0,所以f(11(+f(10(=f(-1)+f(2)=-f(1)+f(2)=-1⇒f(1)=1,14.(22-23高三上·广东·期末)已知函数f(x(,∀x,y∈R,有f(x+y(=f(x(.f(a-y(+f(y(.f(a-x(,A.4a是f(x(的一个周期B.f(x(是奇函数C.f(x(是偶函数D.f(a(=1项.f(a(=≠0,f(x+y(=,f(x(.f(a-y(+f(y(.f(a-x(=×2=因此f(x+y(=f(x(.f(a-y(+f(y(.f(a-x(成立,此时f(1(=,f(-x(=f(x(=,故f(x(为偶函数,故B错误,D错误;f(x+y(=sin(x+y(,f(x(.f(a-y(+f(y(.f(a-x(=sinxcosy+cosxsiny=sin(x+y),因此f(x+y(=f(x(.f(a-y(+f(y(.f(a-x(成立,此时f(x(为奇函数,故C错误;令x=y=0,则f(0(=2f(0(.f(a(,令x=a,y=0,则f(a(=f2(a(+f2(0(,若f(0(=0,则f(a(=f2(a(,又f(a(≠0,故f(a(=1,令y=a,则f(x+a(=f(x(.f(0(+f(a(.f(a-x(,所以f(x+a(=f(a-x(,令x=y=a,则f(2a(=2f(a(f(0(=0,令x=2a,则f(2a+y(=f(2a(.f(a-y(+f(y(.f(-a(=f(y(.f(-a(,又f(2a+y(=f(-y(,故f(-y(=f(y(.f(-a(,此时令y=-a,则f(a(=f(-a(.f(-a(=1,故f(-a(=1或f(-a(=-1.若f(-a(=1,则f(-y(=f(y(,故f(x(为偶函数,故f(x+a(=f(a-x(=f(x-a(,即f(x(=f(2a+x(,所以f(x(为周期函数且周期为2a.若f(-a(=-1,则f(-y(=-f(y(,故f(x(为奇函数,故f(x+a(=f(a-x(=-f(x-a(,即f(2a+x(=-f(x(,88故f(4a+x(=-f(x+2a(=f(x(,所以f(x(为周期函数且周期为4a.若f(0(≠0,则f(a(=,此时f2(0(=-=,故f(0(=或f(0(=-,若f(0(=,令x=-a,y=a,则f(0(=f(-a(f(0(+f(a(f(2a(,所以f(-a(=,令y=a,则f(x+a(=f(x(f(0(+f(a(f(a-x(=f(x(+f(a-x(,令y=-a,则f(x-a(=f(x(f(2a(+f(-a(f(a-x(=f(x(+f(a-x(,故f(x+a(=f(x-a)即f(x+2a(=f(x),故f(x(为周期函数且周期为2a.若f(0(=-,令x=y=a,则f(2a(=-×-×=-,令x=-a,y=a,则f(0(=f(-a(f(0(+f(a(f(2a(,所以f(-a(=,令y=a,则f(x+a(=f(x(f(0(+f(a(f(a-x(=-f(x(+f(a-x(,令y=-a,则f(x-a(=f(x(f(2a(+f(-a(f(a-x(=-f(x(+f(a-x(,故f(x+a(=f(x-a)即f(x+2a(=f(x),故f(x(为周期函数且周期为2a.<时,f(x(=(x-2,则f=.f(x(的周期,将f化为f即可.由y=f(x+的图象关于y轴对称,得y=f(x(的图象关于直线x=对称,99:f=f(1+=f=f=.16.(24-25高三上·广东湛江·期末)已知函数f(x(满足f(x-2(+f(-x(=0,且f(x+1(是奇函数,若f(2(=3,则f(9(+f(10(=()A.-6B.-3C.3D.6【详解】因为f(x+1(是奇函数,所以f(1(=0,f(x+1(=-f(-x+1(,所以f(x+2(=-f(-x(.因为f(x-2(+f(-x(=0,所以f(x-2(=f(x+2(,所以f(x(=f(x+4(,即f(x(是周期为4的周期函数,则f(9(+f(10(=f(1(+f(2(=3.log2(1-x)f(x-1)-f(x-2),17.(24-25高二上·广东广州log2(1-x)f(x-1)-f(x-2),A.-1B.0C.1D.2x≤0x>0【详解】当x>0时,f(x)=f(x-1)-f(x-2),则f(x+1)=f(x)-f(x-1)=-f(x-2),即f(x+3)=-f(x),于是f(x+6)=-f(x+3)=f(x),所以f(2024)=f(337×6+2)=f(2)=-f(-1)=-log22=-1.18.(22-23高二上·广东深圳·期末)已知定义域为R的函数f(x(满足f(3x+1(是奇函数,f(2x-1(是偶A.f(x(的图象关于直线x=-1对称B.f(x(的图象关于点(1,0)对称C.f(-3(=1D.f(x(的一个周期为8【分析】根据f(3x+1(是奇函数,可得f(x(+f(-x+2(=0,判断B;根据f(2x-1(是偶函数,推出f(-x-2(=f(x(,判断A;继而可得f(x+4(=-f(x(,可判断D;利用赋值法求得f(1)=0,根据对称性【详解】由题意知f(3x+1(是奇函数,即f(-3x+1(=-f(3x+1(,:f(-x+1(=-f(x+1(,即f(-x+2(=-f(x(,即f(x(+f(-x+2(=0,又f(2x-1(是偶函数,故f(-2x-1(=f(2x-1(,:f(-x-1(=f(x-1(,即f(-x-2(=f(x(,故f(x(的图象关于直线x=-1对称,A结论正确;由以上可知f(x(=f(-x-2(=-f(-x+2(,即f(x-2(=-f(x+2(,所以f(x+4(=-f(x(,则f(x+8(=-f(x+4(=f(x),由于f(-3x+1(=-f(3x+1(,令x=0,可得f(1)=-f(1),:f(1)=0,而f(x(的图象关于直线x=-1对称,故f(-3(=0,C结论错误,数.x,其关于原点对称后的图像为yx=-2x(x<0(,易知y=-2x(x<0(与f(x)=-|x+2|(x<0(有两个交点,即f(x)=-|x+2|(x<0(上有两个点,中心对称后在f(xx(x>0(上;20.(24-25高一下·广东广州·期末A.f(-x(=-f(x(B.g(-x(=-g(x(C.=6066Df(x)+g(1-x)=3,可得f(-x)+g(1+x)=3,故f(x)+f(-x)=6,故A错误;对于B,在f(x)+f(-x)=6中,取x=0,可得f(0)=3因f(x)+g(1-x)=3,则两式相加,可得f(x)+f(x-2)=6,则f(x-2)+f(x-4)=6,故可得f(x)=f(x-4),即4为函数f(x(的一个周期.期.由g(x(+f(x-3)=3,可得g(x-1(+f(x-4)=3,与f(x)+g(1-x)=3联立,可得g(x-1(=g(1-x),故得g(x(=g(-x(,故B错误;对于C,由f(x)+f(x-2)=6可得f(3)+f(1)=6,但f(3),f(1)的值不能确定,又f(0)=3,f(2)=3,则f(0)+f(1)+f(2)+f(3)=12,A.4是f(x)的一个周期B.f(x)的图象关于直线x=2对称CD.方程f(x)=ln|x|恰有8不同的实数根【详解】对于A,因为g(x)=f(x+1)是偶函数,所以g(-x)=g(x),即f(1-f(2+x)=f(1-(1+x))=f(-x)=-f(x),f(x+4)=-f(x+2)=-(-f(x))=f(x),对于B,由A得f(4-x)=f(-x)=-f(x),函数f(x)的图象关于点(2,0)对称,故B错误;f(1(=2,由f(-x(=f(x+2(,令x=0则f(2(=0,令x=1则f(3(=f(-1(=-f(1(=-2,所以曲线y=f(x)与y=ln|x|有8个交点,故D正确.故选:ACD.22.(24-25高一上·广东汕尾·期末)若函数f(x)=(x2-2x)(x2+mx+n)的图象关于直线x=-1对称,则m+n=,f(x)的最小值为.由f(x)的图象关于直线x=-1对称,得-2,-4必为方程x2+mx+n=0的二根,此时f(x)=(x2-2x)(x2+6x+8)=x(x-2)(x+2f(-2-x)=(-2-x)(-4-x)(-x)(2-x)=x(x-2)(x+2)(x+4)=f(x),所以f(x)的最小值为-16.A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件性和必要性.因为函数f(x)的图象关于(0,1(对称艹f(x(+(-x(=2恒成立,即x3-(a-1(x2+x+b+(-x(3-(a-1((-x(2+(-x(+b=2恒成立,化简得(a-1(x2-b+1=0恒成立,A.(-∞,1)B.(-1,1)C.(-3,1)D.(-∞,1]不等式f(x-2(<f(3(的解集为()A.(-1,5(B.(-∞,-1(U(2,5(C.(-∞,-1(U(5,+∞(D.(-1,2(U(5,+∞(【详解】因为f(x(为R上的偶函数,且在(-∞,0[上单调递增,所以f(x(在[0,+∞(上单调递减.所以f(x-2(<f(3(→|x-2|>3→x-2<-3或x-2>3,即x<-1或x>5.所以所求不等式的解集为:(-∞,-1(U(5,+∞(.26.(24-25高一上·广东深圳·期末)已知函数f(x)是定义域为R的奇函数,且f(x)在[0,+∞)上单调递减.若f(3+m)+f(3m-7)>0,则m的取值范围为()A.(-∞,0)B.(0,+∞)C.(-∞,1)D.(1,+∞)则f(0)=0,f(x(在(-∞,0(上单调递减,即f(x)在R上单调递减.又f(3+m)+f(3m-7)>0,则f(3+m)>-f(3m-7)=f(7-3m(,27.(22-23高一上·广东深圳·期末)若f(x(是偶函数且在[0,+∞(上单调递增,又f(-2(=1,则不等式f(x(>1的解集为()A.{x|-2<x<2{B.{x|x<-2或x>2}C.{x|x<-2或0<x<2}D.{x|x>2或-2<x<0}【分析】根据偶函数的性质有f(x(在(-∞,0)上单调递减,在[0,+∞(上单调递增,且f(-2(=f(2)=【详解】由题设,偶函数f(x(在(-∞,0)上单调递减,在[0,+∞(上单调递增,且f(-2(=f(2)=1,所以f(x(>1=f(|±2|),故x<-2或x>2,解集为{x|x<-2或x>2}.28.(22-23高一上·广东肇庆·期末)已知函数f(x(的定义域是R,函数f(x+1(的图象的对称中心是f(x(-x>0的解集为()A.(-∞,-1(∪(1,+∞(B.(-1,1(C.(-∞,-1(∪(0,1(D.(-1,0(∪(1,+∞(【分析】利用函数f(x+1(的图象的对称中心是(-1,0(可得f(x(是R上的奇函数,由【详解】因为f(x+1(是f(x(向左平移1个单位长度得到,且函数f(x+1(的图象的对称中心是(-1,0(,所以f(x(的图象的对称中心是(0,0(,故f(x(是R上的奇函数,所以f(-1(=-f(1(=-1,≠x2令g(x,所以根据单调性的定义可得g(x(在(0,+∞(上单调递增,由f(x(是R上的奇函数可得g(x(是(-∞,0(∪(0,+∞(上的偶函数所以g(x(在(-∞,0(上单调递减,综上所述,不等式f(x(-x>0的解集为(-1,0(∪(1,+∞(29.(25-26高一上·广东·期末)设偶-7),f(π(,f(-3)的大小关系是()A.f(π(>f(-3(>f(-

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论