2026届陕西省西安市高新一中、交大附中、师大附中数学高一上期末联考试题含解析_第1页
2026届陕西省西安市高新一中、交大附中、师大附中数学高一上期末联考试题含解析_第2页
2026届陕西省西安市高新一中、交大附中、师大附中数学高一上期末联考试题含解析_第3页
2026届陕西省西安市高新一中、交大附中、师大附中数学高一上期末联考试题含解析_第4页
2026届陕西省西安市高新一中、交大附中、师大附中数学高一上期末联考试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届陕西省西安市高新一中、交大附中、师大附中数学高一上期末联考试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.不等式的解集为()A.(-∞,1) B.(0,1)C.(,1) D.(1,+∞)2.已知函数且,则实数的范围()A. B.C. D.3.函数在区间上的最小值为()A. B.C. D.4.已知向量=(1,2),=(2,x),若⊥,则|2+|=()A. B.4C.5 D.5.已知幂函数的图象过点,则的值为A. B.C. D.6.若,且,则角的终边位于A.第一象限 B.第二象限C.第三象限 D.第四象限7.函数的单调递减区间是A. B.C. D.8.如图,在正方体中,分别为的中点,则异面直线和所成角的大小为A. B.C. D.9.我国在文昌航天发射场用长征五号运载火箭成功发射探月工程端娥五号探测器,顺利将探测器送入预定轨道,经过两次轨道修正,嫦娥五号顺利进入环月轨道飞行,嫦娥五号从椭圆形环月轨道变为近圆形环月轨道,若这时把近圆形环月轨道看作圆形轨道,嫦娥五号距离月表400千米,已知月球半径约为1738千米,则嫦娥五号绕月每旋转弧度,飞过的路程约为()()A.1069千米 B.1119千米C.2138千米 D.2238千米10.设入射光线沿直线y=2x+1射向直线,则被反射后,反射光线所在的直线方程是A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若sinθ=,求的值_______12.已知实数x、y满足,则的最小值为____________.13.如下图所示,三棱锥外接球的半径为1,且过球心,围绕棱旋转后恰好与重合.若,则三棱锥的体积为_____________.14.高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,他和阿基米德、牛顿并列为世界三大数学家.用其名字命名的“高斯函数”为:,表示不超过x的最大整数,如,,[2]=2,则关于x的不等式的解集为__________.15.若“”是“”的必要条件,则的取值范围是________16.若,且,则的值为__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.知,.(Ⅰ)若为真命题,求实数的取值范围;(Ⅱ)若为成立的充分不必要条件,求实数的取值范围.18.已知函数.(1)求函数的最小正周期及函数的对称轴方程;(2)若,求函数的单调区间和值域.19.已知圆过三个点.(1)求圆的方程;(2)过原点的动直线与圆相交于不同的两点,求线段的中点的轨迹.20.已知角的顶点与坐标原点重合,始边与x轴的非负半轴重合,终边过点(1)求的值;(2)若,求的值21.如图,已知直角梯形中,且,又分别为的中点,将△沿折叠,使得.(Ⅰ)求证:AE⊥平面CDE;(Ⅱ)求证:FG∥平面BCD;(Ⅲ)在线段AE上找一点R,使得平面BDR⊥平面DCB,并说明理由

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】根据对数的运算化简不等式,然后求解可得.【详解】因为,,所以原不等式等价于,即.故选:A2、B【解析】根据解析式得,进而得令,得为奇函数,,进而结合函数单调性求解即可.【详解】函数,定义域为,满足,所以,令,所以,所以奇函数,,函数在均为增函数,所以在为增函数,所以在为增函数,因为为奇函数,所以在为增函数,所以,解得.故选:B.3、C【解析】求出函数的对称轴,判断函数在区间上的单调性,根据单调性即可求解.【详解】,对称轴,开口向上,所以函数在上单调递减,在单调递增,所以.故选:C4、C【解析】根据求出x的值,再利用向量的运算求出的坐标,最后利用模长公式即可求出答案【详解】因为,所以解得,所以,因此,故选C【点睛】本题主要考查向量的坐标预算以及模长求解,还有就是关于向量垂直的判定与性质5、B【解析】利用幂函数图象过点可以求出函数解析式,然后求出即可【详解】设幂函数的表达式为,则,解得,所以,则.故答案为B.【点睛】本题考查了幂函数,以及对数的运算,属于基础题6、B【解析】∵sinα>0,则角α的终边位于一二象限或y轴的非负半轴,∵由tanα<0,∴角α的终边位于二四象限,∴角α的终边位于第二象限故选择B7、B【解析】是增函数,只要求在定义域内的减区间即可【详解】解:令,可得,故函数的定义域为,则本题即求在上的减区间,再利用二次函数的性质可得,在上的减区间为,故选B【点睛】本题考查复合函数的单调性,解题关键是掌握复合函数单调性的性质8、D【解析】连DE,交AF于G,根据平面几何知识可得,于是,进而得.又在正方体中可得底面,于是可得,根据线面垂直的判定定理得到平面,于是,所以两直线所成角为【详解】如图,连DE,交AF于G在和中,根据正方体的性质可得,∴,∴,∴,∴又在正方体中可得底面,∵底面,∴,又,∴平面,∵平面,∴,∴异面直线和所成角的大小为故选D【点睛】求异面直线所成的角常采用“平移线段法”,将空间角的问题转化为平面问题处理,平移的方法一般有三种类型:利用图中已有的平行线平移;利用特殊点(线段的端点或中点)作平行线平移;补形平移.计算异面直线所成的角时通常放在三角形中利用解三角形的方法进行求解,有时也可通过线面间的垂直关系进行求解9、D【解析】利用弧长公式直接求解.【详解】嫦娥五号绕月飞行半径为400+1738=2138,所以嫦娥五号绕月每旋转弧度,飞过的路程约为(千米).故选:D10、D【解析】由可得反射点A(−1,−1),在入射光线y=2x+1上任取一点B(0,1),则点B(0,1)关于y=x的对称点C(1,0)在反射光线所在的直线上根据点A(−1,−1)和点C(1,0)坐标,利用两点式求得反射光线所在的直线方程是,化简可得x−2y−1=0.故选D.二、填空题:本大题共6小题,每小题5分,共30分。11、6【解析】先通过诱导公式对原式进行化简,然后通分,进而通过同角三角函数的平方关系将原式转化为只含的式子,最后得到答案.【详解】原式=+,因为,所以.所以.故答案为:6.12、【解析】利用基本不等式可得,即求.【详解】依题意,当且仅当,即时等号成立.所以的最小值为.故答案为:.13、【解析】作于,可证得平面,得,得等边三角形,利用是球的直径,得,然后计算出,再应用棱锥体积公式计算体积【详解】∵围绕棱旋转后恰好与重合,∴,作于,连接,则,,∴又过球心,∴,而,∴,同理,,,由,,,得平面,∴故答案为:【点睛】易错点睛:本题考查求棱锥的体积,解题关键是作于,利用旋转重合,得平面,这样只要计算出的面积,即可得体积,这样作图可以得出,为旋转所形成的二面角的平面角,这里容易出错在误认为旋转,即为.旋转是旋转形成的二面角为.应用作出二面角的平面角14、【解析】解一元二次不等式,结合新定义即可得到结果.【详解】∵,∴,∴,故答案为:15、【解析】根据题意解得:,得出,由此可得出实数的取值范围.【详解】根据题意解得:,由于“”是“”必要条件,则,.因此,实数的取值范围是:.故答案为:.16、【解析】∵且,∴,∴,∴cosα+sinα=0,或cosα−sinα=(不合题意,舍去),∴,故答案为−1.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ).【解析】(Ⅰ)解不等式即得;(Ⅱ)再求出不等式的解,由充分不必要条件与集合包含的关系得出不等关系,可求得结论【详解】(Ⅰ)若为真命题,解不等式得,实数的取值范围是.(Ⅱ)解不等式得,为成立的充分不必要条件,是的真子集.且等号不同时取到,得.实数的取值范围是.【点睛】结论点睛:本题考查充分不必要条件的判断,一般可根据如下规则判断:(1)若是的必要不充分条件,则对应集合是对应集合的真子集;(2)是的充分不必要条件,则对应集合是对应集合的真子集;(3)是的充分必要条件,则对应集合与对应集合相等;(4)是的既不充分又不必要条件,对的集合与对应集合互不包含18、(1)最小正周期为,对称轴方程为(2)函数在上单调递减,在上单调递增;值域为【解析】(1)先通过降幂公式化简成,再按照周期和对称轴方程进行求解;(2)求出整体的范围,再结合正弦函数的单调性求解单调区间和值域.【小问1详解】;函数的最小正周期为,函数的对称轴方程为;【小问2详解】,,时,函数单调递减,即时,函数在上单调递减;时,函数在单调递增,即时,函数在上单调递增.,函数的值域为.19、(1)(2)【解析】(1)设圆的方程为,列出方程组,求得的值,即可求得圆的方程;(2)根据题意得到,得出在以为直径的圆上,得到以为直径的圆的方程,再联立两圆的方程组,求得交点坐标,即可得到点的轨迹方程.【小问1详解】解:设圆的方程为,因为圆过三个点,可得,解得,所以圆的方程为,即.【小问2详解】解:因为为线段的中点,且,所以在以为直径的圆上,以为直径的圆的方程为,联立方程组,解得或,所以点的轨迹方程为.20、(1);(2)-2.【解析】(1)先利用三角函数的坐标定义求出,再利用诱导公式求解;(2)求出,再利用差角的正切公式求解.【小问1详解】解:由于角的终边过点,由三角函数的定义可得,则【小问2详解】解:由已知得,则21、(Ⅰ)(Ⅱ)(Ⅲ)见解析【解析】(Ⅰ)(Ⅱ)利用判定定理证明线面平行时,关键是在平面内找一条与已知直线平行的直线,解题时可先直观判断平面内是否已有,若没有,则需作出该直线,常考虑三角形的中位线、平行四边形的对边或过平行线分线段成比例等.证明直线和平面垂直的常用方法:(1)利用判定定理.(2)利用判定定理的推论.(3)利用面面平行的性质.(4)利用面面垂直的性质.(Ⅲ)判定面面垂直的方法(1)面面垂直的定义,即证两平面所成的二面角为直角;(2)面面垂直的判定定理试题解析:(1)由已知得DE⊥AE,AE⊥EC.∵DE∩EC=E,DE、EC⊂平面DCE.∴AE⊥平面CDE.(2)取AB中点H,连接GH、FH,∴GH

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论