2026届福州七中高二上数学期末质量检测模拟试题含解析_第1页
2026届福州七中高二上数学期末质量检测模拟试题含解析_第2页
2026届福州七中高二上数学期末质量检测模拟试题含解析_第3页
2026届福州七中高二上数学期末质量检测模拟试题含解析_第4页
2026届福州七中高二上数学期末质量检测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届福州七中高二上数学期末质量检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知等差数列的前n项和为,,,若(),则n的值为()A.15 B.14C.13 D.122.设太阳光线垂直于平面,在阳光下任意转动棱长为一个单位的立方体,则它在平面上的投影面积的最大值是()A.1 B.C. D.3.上海世博会期间,某日13时至21时累计入园人数的折线图如图所示,那么在13时~14时,14时~15时,…,20时~21时八个时段中,入园人数最多的时段是()A.13时~14时 B.16时~17时C.18时~19时 D.19时~20时4.设变量x,y满足约束条件则目标函数的最小值为()A.3 B.1C.0 D.﹣15.已知直线、的方向向量分别为、,若,则等于()A.1 B.2C.0 D.36.若函数在上有且仅有一个极值点,则实数的取值范围为()A. B.C. D.7.已知双曲线的离心率为2,则C的渐近线方程为()A. B.C. D.8.已知两直线方程分别为l1:x+y=1,l2:ax+2y=0,若l1⊥l2,则a=()A2 B.-2C. D.9.已知命题p:,,则()A., B.,C., D.,10.为了了解1200名学生对学校某项教改实验的意见,打算从中抽取一个容量为40的样本,采用系统抽样方法,则分段的间隔为()A.40 B.30C.20 D.1211.已知曲线与直线总有公共点,则m的取值范围是()A. B.C. D.12.下列说法错误的是()A.命题“,”的否定是“,”B.若“”是“或”的充分不必要条件,则实数m的最大值为2021C.“”是“函数在内有零点”的必要不充分条件D.已知,且,则的最小值为9二、填空题:本题共4小题,每小题5分,共20分。13.我国民间剪纸艺术在剪纸时经常会沿纸的某条对称轴把纸对折.现有一张半径为的圆形纸,对折次可以得到两个规格相同的图形,将其中之一进行第次对折后,就会得到三个图形,其中有两个规格相同,取规格相同的两个之一进行第次对折后,就会得到四个图形,其中依然有两个规格相同,以此类推,每次对折后都会有两个图形规格相同.如果把次对折后得到的不同规格的图形面积和用表示,由题意知,,则________;如果对折次,则________.14.已知函数是函数的导函数,,对任意实数都有,则不等式的解集为___________.15.已知空间向量,则向量在坐标平面上的投影向量是__________16.抛物线的准线方程是,则实数___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知命题p:点在椭圆内;命题q:函数在R上单调递增(1)若p为真命题,求m的取值范围;(2)若为假命题,求实数m的取值范围18.(12分)如图,四边形是矩形,平面平面,为中点,,,(1)证明:平面平面;(2)求二面角的余弦值19.(12分)已知直线l经过两条直线2x﹣y﹣3=0和4x﹣3y﹣5=0的交点,且与直线x+y﹣2=0垂直(1)求直线l的方程;(2)若圆C过点(1,0),且圆心在x轴的正半轴上,直线l被该圆所截得的弦长为,求圆C的标准方程20.(12分)已知椭圆的短轴长为2,左、右焦点分别为,,过且垂直于长轴的弦长为1(1)求椭圆C的标准方程;(2)若A,B为椭圆C上位于x轴同侧的两点,且,共线,求四边形的面积的最大值21.(12分)已知等比数列的公比,且,的等差中项为,.(1)求数列的通项公式;(2)设,求数列的前项和.22.(10分)已知函数,.(1)当时,求不等式的解集;(2)若在上恒成立,求取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】由已知条件列方程组求出,再由列方程求n的值【详解】设等差数列的公差为,则由,,得,解得,因为,所以,即,解得或(舍去),故选:B2、C【解析】确定正方体投影面积最大时,是投影面与平面AB'C平行,从而求出投影面积的最大值.【详解】设正方体投影最大时,是投影面与平面AB'C平行,三个面的投影为两个全等的菱形,其对角线为,即投影面上三条对角线构成边长为的等边三角形,如图所示,所以投影面积为故选:C3、B【解析】要找入园人数最多的,只要根据函数图象找出图象中变化最大的即可【详解】结合函数的图象可知,在13时~14时,14时~15时,…,20时~21时八个时段中,图象变化最快的为16到17点之间故选:B.【点睛】本题考查折线统计图的实际应用,属于基础题.4、C【解析】线性规划问题,作出可行域后,根据几何意义求解【详解】作出可行域如图所示,,数形结合知过时取最小值故选:C5、C【解析】由可得出,利用空间向量数量积的坐标运算可得出关于实数的等式,由此可解得实数的值.【详解】若,则,所以,所以,解得.故选:C6、C【解析】根据极值点的意义,可知函数的导函数在上有且仅有一个零点.结合零点存在定理,即可求得的取值范围.【详解】函数则因为函数在上有且仅有一个极值点即在上有且仅有一个零点根据函数零点存在定理可知满足即可代入可得解得故选:C【点睛】本题考查了函数极值点的意义,函数零点存在定理的应用,属于中档题.7、A【解析】根据离心率及a,b,c的关系,可求得,代入即可得答案.【详解】因为离心率,所以,所以,,则,所以C的渐近线方程为.故选:A8、B【解析】直接利用直线垂直公式计算得到答案.【详解】因为l1⊥l2,所以k1k2=-1,即-=1,解得a=-2.故选:【点睛】本题考查了根据直线垂直计算参数,属于简单题.9、C【解析】由全称命题的否定:将任意改存在并否定结论,即可写出原命题p的否定.【详解】由全称命题的否定为特称命题,∴是“,”.故选:C.10、B【解析】根据系统抽样的概念,以及抽样距的求法,可得结果.【详解】由总数为1200,样本容量为40,所以抽样距为:故选:B【点睛】本题考查系统抽样的概念,属基础题.11、D【解析】对曲线化简可知曲线表示以点为圆心,2为半径的圆的下半部分,对直线方程化简可得直线过定点,画出图形,由图可知,,然后求出直线的斜率即可【详解】由,得,因为,所以曲线表示以点为圆心,2为半径的圆的下半部分,由,得,所以,得,所以直线过定点,如图所示设曲线与轴的两个交点分别为,直线过定点,为曲线上一动点,根据图可知,若曲线与直线总有公共点,则,得,设直线为,则,解得,或,所以,所以,所以,故选:D12、C【解析】对于A:用存在量词否定全称命题,直接判断;对于B:根据充分不必要条件直接判断;对于C:判断出“”是“函数在内有零点”的充分不必要条件,即可判断;对于D:利用基本不等式求最值.【详解】对于A:用存在量词否定全称命题,所以命题“,”的否定是“,”.故A正确;对于B:若“”是“或”的充分不必要条件,所以,即实数m的最大值为2021.故B正确;对于C:“函数在内有零点”,则,解得:或,所以“”是“函数在内有零点”的充分不必要条件.故C错误;对于D:已知,且,所以(当且仅当,即时取等号)故D正确.故选:C二、填空题:本题共4小题,每小题5分,共20分。13、①.②.【解析】首先根据题意得到,再计算即可;根据题意得到,再利用分组求和法求和即可.【详解】因为,,所以,所以..故答案为:;14、【解析】令则,∴在R上是减函数又等价于∴故不等式的解集是答案:点睛:本题考查用构造函数的方法解不等式,即通过构造合适的函数,利用函数的单调性求得不等式的解集,解题时要注意常见的函数类型,如在本题中由于涉及到,故可从以下两种情况入手解决:(1)对于,可构造函数;(2)对于,可构造函数15、【解析】根据投影向量的知识求得正确答案.【详解】空间向量在坐标平面上的投影向量是.故答案为:16、##【解析】将抛物线方程化为标准方程,根据其准线方程即可求得实数.【详解】抛物线化为标准方程:,其准线方程是,而所以,即,故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)根据题意列不等式组求解(2)判断的真假性后分别求解【小问1详解】由题意得,解得且故m的取值范围是【小问2详解】∵为假命题,∴p和q都是真命题,对于命题q,由题意得:恒成立,∴,∴,∴,解得故m的取值范围是18、(1)证明见解析;(2)【解析】(1)利用面面垂直的性质,证得平面,进而可得,平面即可得证;(2)在平面ABC内过点A作Ax⊥AB,以A为原点建立空间直角坐标系,借助空间向量而得解.【详解】(1)因为,为中点,所以,因为是矩形,所以,因为平面平面,平面平面,平面,所以平面,因为平面,所以,又,平面,,所以平面,又平面,所以平面平面;(2)在平面ABC内过点A作Ax⊥AB,由(1)知,平面,故以点A为坐标原点,分别以,,的方向为轴,轴,轴的正方向,建立空间直角坐标系,如图:则,,,,,则,所以,,,,由(1)知,为平面的一个法向量,设平面的法向量为,则,即,令,则,,所以,所以,因为二面角为锐角,则二面角的余弦值为.【点睛】思路点睛:二面角大小求解时要注意结合实际图形判断所求角是锐角还是钝角19、(1)(2)【解析】(1)先求得直线和直线的交点坐标,再用点斜式求得直线的方程.(2)设圆的标准方程为,根据已知条件列方程组,求得,由此求得圆的标准方程.【小问1详解】.直线的斜率为,所以直线的斜率为,所以直线的方程为.【小问2详解】设圆的标准方程为,则,所以圆的标准方程为.20、(1)(2)2【解析】(1)根据已知条件求得,由此求得椭圆的标准方程.(2)延长,交椭圆C于点.设出直线的方程并与椭圆方程联立,化简写出根与系数关系,根据对称性求得四边形的面积的表达式,利用换元法,结合基本不等式求得四边形的面积的最大值.【小问1详解】由题可知,即,因为过且垂直于长轴的弦长为1,所以,所以所以椭圆C的标准方程为【小问2详解】因为,共线,所以延长,交椭圆C于点.设,由(1)可知,可设直线的方程为联立,消去x可得,所以,由对称性可知设与间的距离为d,则四边形的面积令,则.因为,当且仅当时取等号,所以,即四边形的面积的最大值为2【点睛】在椭圆、双曲线、抛物线中,求三角形、四边形面积的最值问题,求解策略是:首先结合弦长公式、点到直线距离公式等求得面积的表达式;然后利用基本不等式、二次函数的性质等知识来求得最值.21、(1);(2)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论