北京市第171中学2026届数学高二上期末教学质量检测试题含解析_第1页
北京市第171中学2026届数学高二上期末教学质量检测试题含解析_第2页
北京市第171中学2026届数学高二上期末教学质量检测试题含解析_第3页
北京市第171中学2026届数学高二上期末教学质量检测试题含解析_第4页
北京市第171中学2026届数学高二上期末教学质量检测试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北京市第171中学2026届数学高二上期末教学质量检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在直三棱柱中,,,,则异面直线与所成角的余弦值为()A. B.C. D.2.已知直线,,若,则实数()A. B.C.1 D.23.已知等比数列的公比为正数,且,,则()A.4 B.2C.1 D.4.已知随机变量,且,,则为()A.0.1358 B.0.2716C.0.1359 D.0.27185.圆心在x轴上且过点的圆与y轴相切,则该圆的方程是()A. B.C. D.6.已知,,,若、、三个向量共面,则实数A3 B.5C.7 D.97.曲线在点处的切线方程是A. B.C. D.8.在等腰中,在线段斜边上任取一点,则线段的长度大于的长度的概率()A. B.C. D.9.已知是椭圆两个焦点,P在椭圆上,,且当时,的面积最大,则椭圆的标准方程为()A. B.C. D.10.若等轴双曲线C过点,则双曲线C的顶点到其渐近线的距离为()A.1 B.C. D.211.已知函数,则()A. B.C. D.12.已知抛物线,过其焦点且斜率为1的直线交抛物线于A,B两点,若线段AB的中点的横坐标为3,则该抛物线的准线方程为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知数列前n项和为,且.(1)证明:是等比数列,并求的通项公式;(2)在①;②;③这三个条件中任选一个补充在下面横线上,并加以解答.已知数列满足___________,求的前n项和.注:如果选择多个方案分别解答,按第一个方案解答计分.14.已知,,且,则的最小值为______.15.如图是一个无盖的正方体盒子展开图,A,B,C,D是展开图上的四点,BD则在正方体盒子中,AD与平面ABC所成角的正弦值为___________.16.已知直线与平行,则___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知关于x的不等式,.(1)若,求不等式的解集;(2)若不等式的解集为R,求k的取值范围.18.(12分)已知椭圆焦距为,点在椭圆C上(1)求椭圆C的方程;(2)过点的直线与C交于M,N两点,点R是直线上任意一点,设直线的斜率分别为,若,求的方程19.(12分)在柯桥古镇的开发中,为保护古桥OA,规划在O的正东方向100m的C处向对岸AB建一座新桥,使新桥BC与河岸AB垂直,并设立一个以线段OA上一点M为圆心,与直线BC相切的圆形保护区(如图所示),且古桥两端O和A与圆上任意一点的距离都不小于50m,经测量,点A位于点O正南方向25m,,建立如图所示直角坐标系(1)求新桥BC的长度;(2)当OM多长时,圆形保护区的面积最小?20.(12分)在平面直角坐标系中,动点到点的距离和它到直线的距离之比为.动点的轨迹为曲线.(1)求曲线的方程,并说明曲线是什么图形;(2)已知曲线与轴的交点分别为,点是曲线上异于的一点,直线的斜率为,直线的斜率为,求证:为定值.21.(12分)已知圆M经过原点和点,且它的圆心M在直线上.(1)求圆M的方程;(2)若点D为圆M上的动点,定点,求线段CD的中点P的轨迹方程.22.(10分)在棱长为4的正方体中,点分别在线段上,点在线段延长线上,,,连接交线段于点.(1)求证平面;(2)求异面直线所成角的余弦值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】以为坐标原点,向量,,方向分别为、、轴建立空间直角坐标系,利用空间向量夹角公式进行求解即可.【详解】以为坐标原点,向量,,方向分别为、、轴建立空间直角坐标系,则,,,,所以,,,,,因此异面直线与所成角的余弦值等于.故选:D.2、D【解析】根据两条直线的斜率相等可得结果.【详解】因为直线,,且,所以,故选:D.3、D【解析】设等比数列的公比为(),则由已知条件列方程组可求出【详解】设等比数列的公比为(),由题意得,且,即,,因为,所以,,故选:D4、C【解析】根据正态分布的对称性可求概率.【详解】由题设可得,,故选:C.5、A【解析】根据题意设出圆的方程,列式即可求出【详解】依题可设圆的方程为,所以,解得即圆的方程是故选:A6、A【解析】由空间向量共面原理得存在实数,,使得,由此能求出实数【详解】解:,,,、、三个向量共面,存在实数,,使得,即有:,解得,,实数故选:【点睛】本题考查空间向量共面原理的应用,属于基础题7、D【解析】先求导数,得切线的斜率,再根据点斜式得切线方程.【详解】,选D.点睛】本题考查导数几何意义以及直线点斜式方程,考查基本求解能力,属基础题.8、C【解析】利用几何概型的长度比值,即可计算.【详解】设直角边长,斜边,则线段的长度大于的长度的概率.故选:C9、A【解析】由题意知c=3,当△F1PF2的面积最大时,点P与椭圆在y轴上的顶点重合,即可解出【详解】由题意知c=3,当△F1PF2的面积最大时,点P与椭圆在y轴上的顶点重合,∵时,△F1PF2的面积最大,∴a==,b=∴椭圆的标准方程为故选:A10、A【解析】先求出双曲线C的标准方程,再求顶点到其渐近线的距离.【详解】设等轴双曲线C的标准方程为,因为点在双曲线上,所以,解得,所以双曲线C的标准方程为,故上顶点到其一条渐近线的距离为.故选:A11、B【解析】求出,代值计算可得的值.【详解】因为,则,故.故选:B.12、B【解析】设,进而根据题意,结合中点弦的问题得,进而再求解准线方程即可.【详解】解:根据题意,设,所以①,②,所以,①②得:,即,因为直线AB的斜率为1,线段AB的中点的横坐标为3,所以,即,所以抛物线,准线方程为.故选:B二、填空题:本题共4小题,每小题5分,共20分。13、(1)证明见解析,;(2)答案见解析.【解析】(1)利用得出的递推关系,变形后可证明是等比数列,由等比数列通项公式得,然后再除以得到新数列是等差数列,从而可求得;(2)选①,直接求出,用错位相减法求和;选②,求出,用分组(并项)求和法求和;选③,求出,用裂项相消法求和【详解】解:(1)当时,因为,所以,两式相减得,.所以.当时,因为,所以,又,故,于是,所以是以4为首项2为公比的等比数列.所以,两边除以得,.又,所以是以2为首项1为公差的等差数列.所以,即.(2)若选①:,即.因为,所以.两式相减得,所以.若选②:,即.所以.若选③:,即.所以.【点睛】本题考查求等差数列、等比数列的通项公式,错位相减法求和.数列求和的常用方法:设数列是等差数列,是等比数列,(1)公式法:等差数列或等比数列的求和直接应用公式求和;(2)错位相减法:数列的前项和应用错位相减法;(3)裂项相消法;数列(为常数,)的前项和用裂项相消法;(4)分组(并项)求和法:数列用分组求和法,如果数列中的项出现正负相间等特征时可能用并项求和法;(5)倒序相加法:满足(为常数)的数列,需用倒序相加法求和14、4【解析】利用“1”的妙用,运用基本不等式即可求解.【详解】∵,即,∴又∵,,∴,当且仅当且,即,时,等号成立,则的最小值为4.故答案为:.15、##【解析】先复原正方体,再构造线面角后可求正弦值.【详解】复原后的正方体如图所示,设所在面的正方形的余下的一个顶点为,连接,则平面,故为AD与平面ABC所成角,而,故为AD与平面ABC所成角的正弦值为.故答案为:.16、【解析】根据平行可得斜率相等列出关于参数的方程,解方程进行检验即可求解.【详解】因为直线与平行,所以,解得或,又因为时,,,所以直线,重合故舍去,而,,,所以两直线平行.所以,故答案为:3.【点睛】(1)当直线的方程中存在字母参数时,不仅要考虑到斜率存在的一般情况,也要考虑到斜率不存在的特殊情况.同时还要注意x,y的系数不能同时为零这一隐含条件(2)在判断两直线平行、垂直时,也可直接利用直线方程的系数间的关系得出结论三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)因式分解后可求不等式的解集.(2)就分类讨论后可得的取值范围.【小问1详解】时,原不等式即为,其解为.【小问2详解】不等式的解集为R,当时,则有,解得,综上,.18、(1);(2).【解析】(1)由焦距为解出,再把点代入椭圆方程中,即可解出答案.(2)根据题意求出当直线与轴重合时,由求出值,即求出的方程为.故只需证:当直线与轴不重合时,上任意一点均使,设出直线方程与椭圆进行联立,化简得证,即可得到答案.【小问1详解】.由于点在椭圆C上,则故椭圆C的方程为.【小问2详解】当直线与轴重合时,是椭圆的左右顶点,不妨设,设,则是上的任意一点,即方程对任意实数都成立,此时的方程为.故只需证:当直线与轴不重合时,上任意一点均使即可,设直线的方程为,,设则由y得证.故的方程为.19、(1)80m;(2).【解析】(1)根据斜率的公式,结合解方程组法和两点间距离公式进行求解即可;(2)根据圆的切线性质进行求解即可.【小问1详解】由题意,可知,,∵∴直线BC方程:①,同理可得:直线AB方程:②由①②可知,∴,从而得故新桥BC得长度为80m【小问2详解】设,则,圆心,∵直线BC与圆M相切,∴半径,又因为,∵∴,所以当时,圆M的面积达到最小20、(1),曲线是以为焦点的椭圆;(2)证明见解析.【解析】(1)由题可得,即求;(2)利用斜率公式及椭圆方程计算即得.【小问1详解】设点坐标为,根据题意,得,左右同时平方,得,整理得,,即,所以曲线的方程是,曲线是以为焦点的椭圆.【小问2详解】由题意得,设的坐标是,因为点在曲线上,所以,因为,所以,所以为定值.21、(1).(2).【解析】(1)设圆M的方程为,由已知条件建立方程组,求解即可;(2)设,,依题意得.代入圆M的方

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论