版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省孝感市八校2026届高一数学第一学期期末统考试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列函数中定义域为,且在上单调递增的是A. B.C. D.2.已知是锐角,那么是A.第一象限角 B.第一象限角或第二象限角C.第二象限角 D.小于的正角3.若,,三点共线,则()A. B.C. D.4.设命题p:,命题q:,则p是q成立的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件5.函数部分图像如图所示,则的值为()A. B.C. D.6.某几何体的三视图如图所示(单位:),则该几何体的体积(单位:)是()A. B.C. D.7.已知扇形的圆心角为,面积为8,则该扇形的周长为()A.12 B.10C. D.8.为了节约水资源,某地区对居民用水实行“阶梯水价”制度:将居民家庭全年用水量(取整数)划分为三档,水价分档递增,其标准如下:阶梯居民家庭全年用水量(立方米)水价(元/立方米)其中水费(元/立方米)水资源费(元/立方米)污水处理费(元/立方米)第一阶梯0-180(含)52.071.571.36第二阶梯181-260(含)74.07第三阶梯260以上96.07如该地区某户家庭全年用水量为300立方米,则其应缴纳的全年综合水费(包括水费、水资源费及污水处理费)合计为元.若该地区某户家庭缴纳的全年综合水费合计为1180元,则此户家庭全年用水量为()A.170立方米 B.200立方米C.220立方米 D.236立方米9.在新冠肺炎疫情初始阶段,可以用指数模型::I(t)=ert(其中r为指数增长率)描述累计感染病例数I(t)随时间t(单位:天)的变化规律.有学者基于已有数据估计出累计感染病例数增加1倍需要的时间约为2天,据此,在新冠肺炎疫情初始阶段,指数增长率r的值约为()(参考数值:ln20.69)A.0.345 B.0.23C.0.69 D.0.83110.已知角顶点与原点重合,始边与轴的正半轴重合,点在角的终边上,则()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知且,则的最小值为______________12.已知一个铜质的实心圆锥的底面半径为6,高为3,现将它熔化后铸成一个铜球(不计损耗),则该铜球的半径是__________13.新高考选课走班“3+1+2”模式指的是:语文、数学、外语三门学科为必考科目,物理、历史两门科目必选一门,化学、生物、思想政治、地理四门科目选两门.已知在一次选课过程中,甲、乙两同学选择科目之间没有影响,在物理和历史两门科目中,甲同学选择历史的概率为,乙同学选择物理的概率为,那么在物理和历史两门科目中甲、乙两同学至少有1人选择物理的概率为______14.已知是定义在R上的偶函数,且在上为增函数,,则不等式的解集为___________.15.在单位圆中,已知角的终边与单位圆的交点为,则______16.已知函数,若,则________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数在上的最大值与最小值之和为(1)求实数的值;(2)对于任意的,不等式恒成立,求实数的取值范围18.在年初的时候,国家政府工作报告明确提出,年要坚决打好蓝天保卫战,加快解决燃煤污染问题,全面实施散煤综合治理.实施煤改电工程后,某县城的近六个月的月用煤量逐渐减少,月至月的用煤量如下表所示:月份用煤量(千吨)(1)由于某些原因,中一个数据丢失,但根据至月份数据得出样本平均值是,求出丢失的数据;(2)请根据至月份的数据,求出关于的线性回归方程;(3)现在用(2)中得到的线性回归方程中得到的估计数据与月月的实际数据的误差来判断该地区的改造项目是否达到预期,若误差均不超过,则认为该地区的改造已经达到预期,否则认为改造未达预期,请判断该地区的煤改电项目是否达预期?(参考公式:线性回归方程,其中)19.定义:若对定义域内任意x,都有(a为正常数),则称函数为“a距”增函数(1)若,(0,),试判断是否为“1距”增函数,并说明理由;(2)若,R是“a距”增函数,求a的取值范围;(3)若,(﹣1,),其中kR,且为“2距”增函数,求的最小值20.已知函数(且).(1)当时,,求的取值范围;(2)若在上最小值大于1,求的取值范围.21.已知函数(1)求函数导数;(2)求函数的单调区间和极值点.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】先求解选项中各函数的定义域,再判定各函数的单调性,可得选项.【详解】因为的定义域为,的定义域为,所以排除选项B,C.因为在是减函数,所以排除选项A,故选D.【点睛】本题主要考查函数的性质,求解函数定义域时,熟记常见的类型:分式,偶次根式,对数式等,单调性一般结合初等函数的单调性进行判定,侧重考查数学抽象的核心素养.2、D【解析】根据是锐角求出的取值范围,进而得出答案【详解】因为是锐角,所以,故故选D.【点睛】本题考查象限角,属于简单题3、A【解析】先求出,从而可得关于的方程,故可求的值.【详解】因为,,故,因为三点共线,故,故,故选:A.4、B【解析】先解不等式,然后根据充分条件和必要条件的定义判断【详解】由,得,所以命题p:,由,得,所以命题q:,因为当时,不一定成立,当时,一定成立,所以p是q成立的必要不充分条件,故选:B5、C【解析】根据的最值得出,根据周期得出,利用特殊点计算,从而得出的解析式,再计算.【详解】由函数的最小值可知:,函数的周期:,则,当时,,据此可得:,令可得:,则函数的解析式为:,.故选:C.【点睛】本题考查了三角函数的图象与性质,属于中档题.6、C【解析】先还原几何体为一直四棱柱,再根据柱体体积公式求结果.【详解】根据三视图可得几何体为一个直四棱柱,高为,底面为直角梯形,上下底分别为、,梯形的高为,因此几何体的体积为,选C.【点睛】先由几何体的三视图还原几何体的形状,再在具体几何体中求体积或表面积等.7、A【解析】利用已知条件求出扇形的半径,即可得解周长【详解】解:设扇形的半径r,扇形OAB的圆心角为4弧度,弧长为:4r,其面积为8,可得4r×r=8,解得r=2扇形的周长:2+2+8=12故选:A8、C【解析】根据用户缴纳的金额判定全年用水量少于260,利用第二档的收费方式计算即可.【详解】若该用户全年用水量为260,则应缴纳元,所以该户家庭的全年用水量少于260,设该户家庭全年用水量为x,则应缴纳元,解得.故选:C9、A【解析】由题设可知第天感染病例数为,则第天的感染感染病例数为,由感染病例数增加1倍需要的时间约为2天,则,解出即可得出答案.【详解】由题设可知第天感染病例数为,则第天的感染感染病例数为由感染病例数增加1倍需要的时间约为2天,则所以,即所以故选:A10、D【解析】先根据三角函数的定义求出,然后采用弦化切,代入计算即可【详解】因为点在角的终边上,所以故选:D二、填空题:本大题共6小题,每小题5分,共30分。11、9【解析】因为且,所以取得等号,故函数的最小值为9.,答案为9.12、3【解析】设铜球的半径为,则,得,故答案为.13、【解析】至少1人选择物理即为1人选择物理或2人都选择物理,由题分别得到甲选择物理的概率与乙选择历史的概率,进而求解即可.【详解】由题,设“在物理和历史两门科目中甲、乙两同学至少有1人选择物理”事件,则包括有1人选择物理,或2人都选择物理,因为甲同学选择历史的概率为,则甲同学选择物理的概率为,因为乙同学选择物理的概率为,则乙同学选择历史的概率为,故,故答案为:14、【解析】根据题意求出函数的单调区间及所过的定点,进而解出不等式.【详解】因为是定义在R上的偶函数,且在上为增函数,,所以函数在上为减函数,.所以且在上为增函数,,在上为减函数,.所以的解集为:.故答案为:.15、【解析】先由三角函数定义得,再由正切的两角差公式计算即可.【详解】由三角函数的定义有,而.故答案为:16、【解析】根据题意,将分段函数分类讨论计算可得答案【详解】解:当时,,即,解得,满足题意;当时,,即,解得,不满足题意故.故答案为.【点睛】本题考查分段函数的计算,属于基础题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】(1)根据指对数函数的单调性得函数在上是单调函数,进而得,解方程得;(2)根据题意,将问题转化为对于任意的,恒成立,进而求函数的最值即可.【详解】解:(1)因为函数在上的单调性相同,所以函数在上是单调函数,所以函数在上的最大值与最小值之和为,所以,解得和(舍)所以实数的值为.(2)由(1)得,因为对于任意的,不等式恒成立,所以对于任意的,恒成立,当时,为单调递增函数,所以,所以,即所以实数的取值范围【点睛】本题考查指对数函数的性质,不等式恒成立求参数范围,考查运算求解能力,回归转化思想,是中档题.本题第二问解题的关键在于根据题意,将问题转化为任意的,恒成立求解.18、(1)4(2)(3)该地区的煤改电项目已经达到预期【解析】(1)根据平均数计算公式得,解得丢失数据;(2)根据公式求,再根据求;(3)根据线性回归方程求估计数据,并与实际数据比较误差,确定结论.试题解析:解:(1)设丢失的数据为,则得,即丢失的数据是.(2)由数据求得,由公式求得所以关于的线性回归方程为(3)当时,,同样,当时,,所以,该地区的煤改电项目已经达到预期19、(1)见解析;(2);(3).【解析】(1)利用“1距”增函数的定义证明即可;(2)由“a距”增函数的定义得到在上恒成立,求出a的取值范围即可;(3)由为“2距”增函数可得到在恒成立,从而得到恒成立,分类讨论可得到的取值范围,再由,可讨论出的最小值【详解】(1)任意,,因为,,所以,所以,即是“1距”增函数(2).因为是“距”增函数,所以恒成立,因为,所以在上恒成立,所以,解得,因为,所以.(3)因为,,且为“2距”增函数,所以时,恒成立,即时,恒成立,所以,当时,,即恒成立,所以,得;当时,,得恒成立,所以,得,综上所述,得.又,因为,所以,当时,若,取最小值为;当时,若,取最小值.因为在R上是单调递增函数,所以当,的最小值为;当时的最小值为,即.【点睛】本题考查了函数的综合知识,考查了函数的单调性与最值,考查了恒成立问题,考查了分类讨论思想的运用,属于中档题20、(1).(2).【解析】(1)当时,得到函数的解析式,把不等式,转化为,即可求解;(2)由在定义域内单调递减,分类讨论,即可求解函数的最大值,得到答案.【详解】(1)当时,,,得.(2)在定义域内单调递减,当时,函数在上单调递减,,得.当时,函数在上单调递增,,不成立.综上:.【点睛】本题主要考查了指数函数的图象与
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 46947-2025棉纤维术语、分类和编码
- 2025年信息技术治理与安全管理手册
- 公共交通节能减排制度
- 车站客运服务创新管理制度
- 办公室员工培训资源管理制度
- 2026年某区某国企劳务派遣岗公开招聘10人备考题库及完整答案详解一套
- 2026年贺州市平桂区西湾社区卫生服务中心招聘备考题库附答案详解
- 养老院消防安全检查制度
- 养老院入住老人生活照料服务规范制度
- 2026年温岭市青少年宫招聘外聘专业教师备考题库及完整答案详解1套
- 酒店物业管理合同范本
- 医疗质量改进中文书书写能力提升路径
- 血乳酸在急危重症应用的专家共2026
- STM32G4入门与电机控制实战
- 2025年中共深圳市龙华区委党校博士后公开招聘(广东)笔试历年典型考题(历年真题考点)解题思路附带答案详解
- 香港专业服务助力中国内地企业出海成功案例实录
- 人文护理:护理与人文关怀的国际化趋势
- 2025年国家义务教育质量监测小学四年级劳动教育模拟测试题及答案
- 防止错漏混培训课件
- 2025年及未来5年中国钟表修理市场运行态势及行业发展前景预测报告
- 2024集中式光伏电站场区典型设计手册
评论
0/150
提交评论