版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届新疆博尔塔拉蒙古自治州第五师中学高三上数学期末经典模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.等比数列中,,则与的等比中项是()A.±4 B.4 C. D.2.已知命题:任意,都有;命题:,则有.则下列命题为真命题的是()A. B. C. D.3.已知向量,满足||=1,||=2,且与的夹角为120°,则=()A. B. C. D.4.我国古代数学著作《九章算术》中有如下问题:“今有器中米,不知其数,前人取半,中人三分取一,后人四分取一,余米一斗五升(注:一斗为十升).问,米几何?”下图是解决该问题的程序框图,执行该程序框图,若输出的S=15(单位:升),则输入的k的值为() A.45 B.60 C.75 D.1005.总体由编号01,,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为7816
6572
0802
6314
0702
4369
9728
0198
3204
9234
4935
8200
3623
4869
6938
7481
A.08 B.07 C.02 D.016.已知函数的图象如图所示,则可以为()A. B. C. D.7.若直线经过抛物线的焦点,则()A. B. C.2 D.8.给出个数,,,,,,其规律是:第个数是,第个数比第个数大,第个数比第个数大,第个数比第个数大,以此类推,要计算这个数的和.现已给出了该问题算法的程序框图如图,请在图中判断框中的①处和执行框中的②处填上合适的语句,使之能完成该题算法功能()A.; B.;C.; D.;9.已知双曲线,为坐标原点,、为其左、右焦点,点在的渐近线上,,且,则该双曲线的渐近线方程为()A. B. C. D.10.已知集合,则()A. B. C. D.11.已知等差数列中,则()A.10 B.16 C.20 D.2412.如图,内接于圆,是圆的直径,,则三棱锥体积的最大值为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知集合,,则_____________.14.《九章算术》中记载了“今有共买豕,人出一百,盈一百;人出九十,适足。问人数、豕价各几何?”.其意思是“若干个人合买一头猪,若每人出100,则会剩下100;若每人出90,则不多也不少。问人数、猪价各多少?”.设分别为人数、猪价,则___,___.15.如图所示,直角坐标系中网格小正方形的边长为1,若向量、、满足,则实数的值为_______.16.在直角坐标系中,直线的参数方程为(为参数),曲线的参数方程为(为参数).(1)求直线和曲线的普通方程;(2)设为曲线上的动点,求点到直线距离的最小值及此时点的坐标.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某市计划在一片空地上建一个集购物、餐饮、娱乐为一体的大型综合园区,如图,已知两个购物广场的占地都呈正方形,它们的面积分别为13公顷和8公顷;美食城和欢乐大世界的占地也都呈正方形,分别记它们的面积为公顷和公顷;由购物广场、美食城和欢乐大世界围成的两块公共绿地都呈三角形,分别记它们的面积为公顷和公顷.(1)设,用关于的函数表示,并求在区间上的最大值的近似值(精确到0.001公顷);(2)如果,并且,试分别求出、、、的值.18.(12分)如图,在三棱锥中,,,侧面为等边三角形,侧棱.(1)求证:平面平面;(2)求三棱锥外接球的体积.19.(12分)如图,是正方形,点在以为直径的半圆弧上(不与,重合),为线段的中点,现将正方形沿折起,使得平面平面.(1)证明:平面.(2)三棱锥的体积最大时,求二面角的余弦值.20.(12分)已知椭圆:的两个焦点是,,在椭圆上,且,为坐标原点,直线与直线平行,且与椭圆交于,两点.连接、与轴交于点,.(1)求椭圆的标准方程;(2)求证:为定值.21.(12分)在中,角、、所对的边分别为、、,角、、的度数成等差数列,.(1)若,求的值;(2)求的最大值.22.(10分)已知a>0,b>0,a+b=2.(Ⅰ)求的最小值;(Ⅱ)证明:
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】
利用等比数列的性质可得,即可得出.【详解】设与的等比中项是.
由等比数列的性质可得,.
∴与的等比中项
故选A.【点睛】本题考查了等比中项的求法,属于基础题.2、B【解析】
先分别判断命题真假,再由复合命题的真假性,即可得出结论.【详解】为真命题;命题是假命题,比如当,或时,则不成立.则,,均为假.故选:B【点睛】本题考查复合命题的真假性,判断简单命题的真假是解题的关键,属于基础题.3、D【解析】
先计算,然后将进行平方,,可得结果.【详解】由题意可得:∴∴则.故选:D.【点睛】本题考查的是向量的数量积的运算和模的计算,属基础题。4、B【解析】
根据程序框图中程序的功能,可以列方程计算.【详解】由题意,.故选:B.【点睛】本题考查程序框图,读懂程序的功能是解题关键.5、D【解析】从第一行的第5列和第6列起由左向右读数划去大于20的数分别为:08,02,14,07,01,所以第5个个体是01,选D.考点:此题主要考查抽样方法的概念、抽样方法中随机数表法,考查学习能力和运用能力.6、A【解析】
根据图象可知,函数为奇函数,以及函数在上单调递增,且有一个零点,即可对选项逐个验证即可得出.【详解】首先对4个选项进行奇偶性判断,可知,为偶函数,不符合题意,排除B;其次,在剩下的3个选项,对其在上的零点个数进行判断,在上无零点,不符合题意,排除D;然后,对剩下的2个选项,进行单调性判断,在上单调递减,不符合题意,排除C.故选:A.【点睛】本题主要考查图象的识别和函数性质的判断,意在考查学生的直观想象能力和逻辑推理能力,属于容易题.7、B【解析】
计算抛物线的交点为,代入计算得到答案.【详解】可化为,焦点坐标为,故.故选:.【点睛】本题考查了抛物线的焦点,属于简单题.8、A【解析】
要计算这个数的和,这就需要循环50次,这样可以确定判断语句①,根据累加最的变化规律可以确定语句②.【详解】因为计算这个数的和,循环变量的初值为1,所以步长应该为1,故判断语句①应为,第个数是,第个数比第个数大,第个数比第个数大,第个数比第个数大,这样可以确定语句②为,故本题选A.【点睛】本题考查了补充循环结构,正确读懂题意是解本题的关键.9、D【解析】
根据,先确定出的长度,然后利用双曲线定义将转化为的关系式,化简后可得到的值,即可求渐近线方程.【详解】如图所示:因为,所以,又因为,所以,所以,所以,所以,所以,所以,所以渐近线方程为.故选:D.【点睛】本题考查根据双曲线中的长度关系求解渐近线方程,难度一般.注意双曲线的焦点到渐近线的距离等于虚轴长度的一半.10、C【解析】
解不等式得出集合A,根据交集的定义写出A∩B.【详解】集合A={x|x2﹣2x﹣30}={x|﹣1x3},,故选C.【点睛】本题考查了解不等式与交集的运算问题,是基础题.11、C【解析】
根据等差数列性质得到,再计算得到答案.【详解】已知等差数列中,故答案选C【点睛】本题考查了等差数列的性质,是数列的常考题型.12、B【解析】
根据已知证明平面,只要设,则,从而可得体积,利用基本不等式可得最大值.【详解】因为,所以四边形为平行四边形.又因为平面,平面,所以平面,所以平面.在直角三角形中,,设,则,所以,所以.又因为,当且仅当,即时等号成立,所以.故选:B.【点睛】本题考查求棱锥体积的最大值.解题方法是:首先证明线面垂直同,得棱锥的高,然后设出底面三角形一边长为,用建立体积与边长的函数关系,由基本不等式得最值,或由函数的性质得最值.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
由集合和集合求出交集即可.【详解】解:集合,,.故答案为:.【点睛】本题考查了交集及其运算,属于基础题.14、10900【解析】
由题意列出方程组,求解即可.【详解】由题意可得,解得.故答案为10900【点睛】本题主要考查二元一次方程组的解法,用消元法来求解即可,属于基础题型.15、【解析】
根据图示分析出、、的坐标表示,然后根据坐标形式下向量的数量积为零计算出的取值.【详解】由图可知:,所以,又因为,所以,所以.故答案为:.【点睛】本题考查向量的坐标表示以及坐标形式下向量的数量积运算,难度较易.已知,若,则有.16、(1),;(2),.【解析】
(1)利用代入消参的方法即可将两个参数方程转化为普通方程;(2)利用参数方程,结合点到直线的距离公式,将问题转化为求解二次函数最值的问题,即可求得.【详解】(1)直线的普通方程为.在曲线的参数方程中,,所以曲线的普通方程为.(2)设点.点到直线的距离.当时,,所以点到直线的距离的最小值为.此时点的坐标为.【点睛】本题考查将参数方程转化为普通方程,以及利用参数方程求距离的最值问题,属中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),最大值公顷;(2)17、25、5、5.【解析】
(1)由余弦定理求出三角形ABC的边长BC,进而可以求出,,由面积公式求出,,即可求出,并求出最值;(2)由(1)知,,,即可求出、,再算出,代入(1)中表达式求出,。【详解】(1)由余弦定理得,,所以,,同理可得又,所以,故在区间上的最大值为,近似值为。(2)由(1)知,,,所以,进而,由知,,,故、、、的值分别是17、25、5、5。【点睛】本题主要考查利用余弦定理解三角形以及同角三角函数平方关系的应用,意在考查学生的数学建模以及数学运算能力。18、(1)见解析;(2).【解析】
(1)设中点为,连接、,利用等腰三角形三线合一的性质得出,利用勾股定理得出,由线面垂直的判定定理可证得平面,再利用面面垂直的判定定理可得出平面平面;(2)先确定三棱锥的外接球球心的位置,利用三角形相似求出外接球的半径,再由球体的体积公式可求得结果.【详解】(1)设中点为,连接、,因为,所以.又,所以,又由已知,,则,所以,.又为正三角形,且,所以,因为,所以,,,平面,又平面,平面平面;(2)由于是底面直角三角形的斜边的中点,所以点是的外心,由(1)知平面,所以三棱锥的外接球的球心在上.在中,的垂直平分线与的交点即为球心,记的中点为点,则.由与相似可得,所以.所以三棱锥外接球的体积为.【点睛】本题考查面面垂直的证明,同时也考查了三棱锥外接球体积的计算,找出外接球球心的位置是解答的关键,考查推理能力与计算能力,属于中等题.19、(1)见解析(2)【解析】
(1)利用面面垂直的性质定理证得平面,由此证得,根据圆的几何性质证得,由此证得平面.(2)判断出三棱锥的体积最大时点的位置.建立空间直角坐标系,通过平面和平面的法向量,计算出二面角的余弦值.【详解】(1)证明:因为平面平面是正方形,所以平面.因为平面,所以.因为点在以为直径的半圆弧上,所以.又,所以平面.(2)解:显然,当点位于的中点时,的面积最大,三棱锥的体积也最大.不妨设,记中点为,以为原点,分别以的方向为轴、轴、轴的正方向,建立如图所示的空间直角坐标系,则,设平面的法向量为,则令,得.设平面的法向量为,则令,得,所以.由图可知,二面角为锐角,故二面角的余弦值为.【点睛】本小题主要考查线面垂直的证明,考查二面角的求法,考查空间想象能力和逻辑推理能力,属于中档题.20、(1)(2)证明见解析【解析】
(1)根据椭圆的定义可得,将代入椭圆方程,即可求得的值,求得椭圆方程;(2)设直线的方程,代入椭圆方程,求得直线和的方程,求得和的横坐标,表示出,根据韦达定理即可求证为定值.【详解】(1)因为,由椭圆的定义得,,点在椭圆上,代入椭圆方程,解得,所以的方程为;(2)证明:设,,直线的斜率为,设直线的方程为,联立方程组,消去,整理得,所以,,直线的直线方程为,令,则,同理,所以:,代入整理得,所以为定值.【点睛】本小题主要考查椭圆标准方程的求法,考查直线和椭圆的位置关系,考查椭圆中的定值问题,属于中档题.21、(1);(2).【解析】
(1)由角的度数成等差数列,得.又.由正弦定理,得,即.由余弦定理,得,即,解得.(2)由正弦定理,得.由,得.所以当,即时,.【方法点睛】解三角形问题基本思想方法:从条件出发,利用正
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 互联网广告管理规范与审核(标准版)
- 2025年医疗保险理赔服务规范
- 职业健康管理规范与操作流程
- 会议考勤与出勤考核制度
- 合同管理流程操作指南(标准版)
- 保密及知识产权保护制度
- 办公室员工离职手续办理制度
- 2026年郑州新郑天佑中医院(原新郑市中医院)招聘备考题库及答案详解一套
- 2026年陵水黎族自治县数字投资有限公司招聘备考题库及一套答案详解
- 养老院入住老人管理制度
- 2026年宁夏贺兰工业园区管委会工作人员社会化公开招聘备考题库参考答案详解
- 癌痛患者心理支持策略
- 2025年12月份四川成都市第八人民医院编外招聘9人笔试参考题库及答案解析
- 辽宁省大连市滨城高中联盟2026届高三上学期12月期中Ⅱ考试 数学
- 2026年住院医师规培(超声医学科)试题及答案
- 2025年中职酒店管理(酒店管理基础)试题及答案
- 北京广播电视台招聘笔试题库2026
- 2025江西省中赣投勘察设计有限公司招聘6人笔试重点试题及答案解析
- 25秋二上语文期末押题卷5套
- VESDA课件教学课件
- TCCSAS 060-2025 涉氢建筑物及容器泄爆设计方法
评论
0/150
提交评论