2026届浙江省舟山市高一上数学期末检测模拟试题含解析_第1页
2026届浙江省舟山市高一上数学期末检测模拟试题含解析_第2页
2026届浙江省舟山市高一上数学期末检测模拟试题含解析_第3页
2026届浙江省舟山市高一上数学期末检测模拟试题含解析_第4页
2026届浙江省舟山市高一上数学期末检测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届浙江省舟山市高一上数学期末检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.命题关于的不等式的解集为的一个充分不必要条件是()A. B.C. D.2.已知函数,则下列判断正确的是A.函数是奇函数,且在R上是增函数B.函数偶函数,且在R上是增函数C.函数是奇函数,且在R上是减函数D.函数是偶函数,且在R上是减函数3.定义在R上的函数满足,且当时,,,若任给,存在,使得,则实数a的取值范围为().A. B.C. D.4.若函数f(x)满足“对任意x1,x2∈(0,+∞),当x1<x2时,都有f(x1)>f(x2)”,则f(x)解析式可以是()A.f(x)=(x-1)2 B.f(x)=exC.f(x)= D.f(x)=ln(x+1)5.如果命题“使得”是假命题,那么实数的取值范围是()A. B.C. D.6.已知,则()A.-4 B.4C. D.7.在数学中,布劳威尔不动点定理是拓扑学里一个非常重要的不动点定理,它可应用到有限维空间,并构成一般不动点定理的基石,布劳威尔不动点定理得名于荷兰数学家鲁伊兹·布劳威尔(L.E.J.Brouwer),简单的讲就是对于满足一定条件的连续函数,存在点,使得,那么我们称该函数为“不动点”函数,下列为“不动点”函数的是()A. B.C. D.8.函数的大致图象是A. B.C. D.9.已知正实数满足,则最小值为A. B.C. D.10.有四个关于三角函数的命题::xR,+=:x、yR,sin(x-y)=sinx-siny:x=sinx:sinx=cosyx+y=其中假命题的是A., B.,C., D.,二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,其所有的零点依次记为,则_________.12.函数y=的单调递增区间是____.13.化简求值(1)化简(2)已知:,求值14.已知函数,若函数有三个零点,则实数的取值范围是________.15.计算:______.16.设函数,若不存在,使得与同时成立,则实数a的取值范围是________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知集合.(1)当时,求;(2)若,求实数的取值范围.18.在△中,已知,直线经过点(Ⅰ)若直线:与线段交于点,且为△外心,求△的外接圆的方程;(Ⅱ)若直线方程为,且△的面积为,求点的坐标19.2009年某市某地段商业用地价格为每亩60万元,由于土地价格持续上涨,到2021年已经上涨到每亩120万元.现给出两种地价增长方式,其中是按直线上升的地价,是按对数增长的地价,t是2009年以来经过的年数,2009年对应的t值为0(1)求,的解析式;(2)2021年开始,国家出台“稳定土地价格”的相关调控政策,为此,该市要求2026届的地价相对于2021年上涨幅度控制在10%以内,请分析比较以上两种增长方式,确定出最合适的一种模型.(参考数据:)20.已知函数,.(1)求函数的定义域;(2)求不等式的解集.21.若函数f(x)满足f(logax)=·(x-)(其中a>0且a≠1).(1)求函数f(x)解析式,并判断其奇偶性和单调性;(2)当x∈(-∞,2)时,f(x)-4的值恒为负数,求a的取值范围

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】根据三个二次式的性质,求得命题的充要条件,结合选项和充分不必要的判定方法,即可求解.【详解】由题意,命题不等式的解集为,即不等式的解集为,可得,解得,即命题的充要条件为,结合选项,可得,所以是的一个充分不必要条件.故选:D.2、A【解析】求出的定义域,判断的奇偶性和单调性,进而可得解.【详解】的定义域为R,且;∴是奇函数;又和都是R上的增函数;是R上的增函数故选A【点睛】本题考查奇偶性的判断,考查了指数函数的单调性,属于基础题3、D【解析】求出在,上的值域,利用的性质得出在,上的值域,再求出在,上的值域,根据题意得出两值域的包含关系,从而解出的范围【详解】解:当时,,可得在,上单调递减,在上单调递增,在,上的值域为,,在上的值域为,,在上的值域为,,,,在上的值域为,,当时,为增函数,在,上的值域为,,,解得;当时,为减函数,在,上的值域为,,,解得;当时,为常数函数,值域为,不符合题意;综上,的范围是或故选:【点睛】本题考查了分段函数的值域计算,集合的包含关系,对于不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数,(1)若,,总有成立,故;(2)若,,有成立,故;(3)若,,有成立,故;(4)若,,有,则值域是值域的子集4、C【解析】根据条件知,f(x)在(0,+∞)上单调递减对于A,f(x)=(x-1)2在(1,+∞)上单调递增,排除A;对于B,f(x)=ex在(0,+∞)上单调递增,排除B;对于C,f(x)=在(0,+∞)上单调递减,C正确;对于D,f(x)=ln(x+1)在(0,+∞)上单调递增,排除D.5、B【解析】特称命题是假命题,则该命题的否定为全称命题且是真命题,然后根据即可求解.【详解】依题意,命题“使得”是假命题,则该命题的否定为“”,且是真命题;所以,.故选:B6、C【解析】已知,可得,根据两角差的正切公式计算即可得出结果.【详解】已知,则,.故选:C.7、C【解析】根据已知定义,将问题转化为方程有解,然后逐项进行求解并判断即可.【详解】根据定义可知:若有不动点,则有解.A.令,所以,此时无解,故不是“不动点”函数;B.令,此时无解,,所以不是“不动点”函数;C.当时,令,所以或,所以“不动点”函数;D.令即,此时无解,所以不是“不动点”函数.故选:C.8、D【解析】关于对称,且时,,故选D9、A【解析】由题设条件得,,利用基本不等式求出最值【详解】由已知,,所以当且仅当时等号成立,又,所以时取最小值故选A【点睛】本题考查据题设条件构造可以利用基本不等式的形式,利用基本不等式求最值10、A【解析】故是假命题;令但故是假命题.二、填空题:本大题共6小题,每小题5分,共30分。11、16【解析】由零点定义,可得关于的方程.去绝对值分类讨论化简.将对数式化为指数式,再去绝对值可得四个方程.结合韦达定理,求得各自方程两根的乘积,即可得所有根的积.【详解】函数的零点即所以去绝对值可得或即或去绝对值可得或,或当,两边同时乘以,化简可得,设方程的根为.由韦达定理可得当,两边同时乘以,化简可得,设方程的根为.由韦达定理可得当,两边同时乘以,化简可得,设方程的根为.由韦达定理可得当,两边同时乘以,化简可得,设方程的根为.由韦达定理可得综上可得所有零点的乘积为故答案为:【点睛】本题考查了函数零点定义,含绝对值方程的解法,分类讨论思想的应用,由韦达定理研究方程根的关系,属于难题.12、【解析】设函数,再利用复合函数的单调性原理求解.【详解】解:由题得函数的定义域为.设函数,因为函数的单调递减区间为,单调递增区间为,函数是单调递减函数,由复合函数的单调性得函数y=的单调递增区间为.故答案为:13、(1)(2)【解析】(1)利用诱导公式化简即可;(2)先进行弦化切,把代入即可求解.【小问1详解】.【小问2详解】因为,所以.所以.又,所以.14、【解析】作出函数图象,进而通过数形结合求得答案.【详解】问题可以转化为函数的图象与直线有3个交点,如图所示:所以时满足题意.故答案为:.15、【解析】利用指数幂和对数的运算性质可计算出所求代数式的值.【详解】原式.故答案为:.【点睛】本题考查指数与对数的计算,考查指数幂与对数运算性质的应用,考查计算能力,属于基础题.16、.【解析】当恒成立,不存在使得与同时成立,当时,恒成立,则需时,恒成立,只需时,,对的对称轴分类讨论,即可求解.【详解】若时,恒成立,不存使得与同时成立,则时,恒成立,即时,,对称轴为,当时,即,解得,当,即为抛物线顶点的纵坐标,,只需,.若恒成立,不存在使得与同时成立,综上,的取值范围是.故答案为:.【点睛】本题考查了二次函数和一次函数的图像和性质,不等式恒成立和能成立问题的解法,考查分类讨论和转化化归的思想方法,属于较难题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)m=﹣2时求出集合B,然后进行交集、并集的运算即可;(2)由B⊆A便可得到,解该不等式组即可得到实数m的取值范围试题解析:(1);(2)解:当时,,由中不等式变形得,解得,即.(1).(2),解得,的取值范围为.18、(Ⅰ)(Ⅱ)或【解析】(Ⅰ)先求出直线的方程,进而得到D点坐标,为直径长,从而得到△的外接圆的方程;(Ⅱ)由题意可得,,从而解得点的坐标【详解】(Ⅰ)解法一:由已知得,直线的方程为,即,联立方程组得:,解得,又,△的外接圆的半径为∴△的外接圆的方程为.解法二:由已知得,,且为△的外心,∴△为直角三角形,为线段的中点,∴圆心,圆的半径,∴△的外接圆的方程为.或线段即为△的外接圆的直径,故有△的外接圆的方程为,即(Ⅱ)设点的坐标为,由已知得,,所在直线方程,到直线的距离,①又点的坐标为满足方程,即②联立①②解得:或,∴点的坐标为或【点睛】本题考查了圆的方程,直线的交点,点到直线的距离,考查了逻辑推理能力与计算能力,属于基础题.19、(1),;,(2)分析比较见解析;应该选择模型【解析】(1)由,求得;由,求得;(2)分别由,,,算出直线和对数增长的增长率与10%比较即可.【小问1详解】解:由题知:,,所以,解得:,所以,;又,,所以,解得:,所以,;【小问2详解】若按照模型,到2026届时,,,直线上升的增长率为,不符合要求;若按照模型,到2026届时,,,对数增长的增长率为,符合要求;综上分析,应该选择模型20、(1)(2)答案见解析【解析】(1)根据对数的真数大于零可得出关于的不等式组,由此可解得函数的定义域;(2)将所求不等式变形为,分、两种情况讨论,利用对数函数的单调性结合函数的定义域可求得原不等式的解集.【小问1详解】解:,则有,解得,故函数的定义域为.【小问2详解】解:当时,函数在上为增函数,由,可得,所以,解得,此时不等式的解集为;当时,函数在上为减函数,由,可得,所以,解得,此时不等式的解集为.综上所述,当时,不等式的解集为;当时,不等式的解集为.21、(1)见解析.(2)[2-,1)∪(1,2+]【解析】试题分析:(1)利用换元法求函数解析式,注意换元时元的范围,再根据奇偶性定义判断函数奇偶性,最后根据复合函数单调性性质判断函数单调性(2)不等式恒成立问题一般转化为对应函数最值问题:即f(x)最大值小于4,根据函数单调性确定函数最大值,自在解不等式可得a的取值范围试题解析:(1)令logax=t(t∈R),则x=at,∴f(t)=(at-a-t)∴f(x)=(ax-a-x)(x∈R)∵f(-x)=(a-x-ax)=-(ax-a-x)=-f(x),∴f(x)为奇函数当a>1时,y=ax为增函数,y=-a-x为增函数,且>0,∴f(x)为增函数当0<a<1时,y=ax为减函数,y=-a-x为减函数,且<0,∴f(x)为增函数.∴f(x)在R上为增函数(2)∵f(x)是R上的增函数,∴y

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论