版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届湖南怀化市中小学课程改革教育质量监测高二上数学期末调研模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知随机变量X的分布列如表所示,则()X123Pa2a3aA. B.C. D.2.下图称为弦图,是我国古代三国时期赵爽为《周髀算经》作注时为证明勾股定理所绘制,我们新教材中利用该图作为“()”的几何解释A.如果,,那么B.如果,那么C.对任意实数和,有,当且仅当时等号成立D.如果,那么3.各项均为正数的等比数列的前项和为,若,,则()A. B.C. D.4.抛物线有如下光学性质:平行于抛物线对称轴的入射光线经抛物线反射后必过抛物线的焦点.已知抛物线的焦点为F,一条平行于y轴的光线从点射出,经过抛物线上的点A反射后,再经抛物线上的另一点B射出,则经点B反射后的反射光线必过点()A. B.C. D.5.抛物线上的一点到其焦点的距离等于()A. B.C. D.6.给出下列结论:①如果数据的平均数为3,方差为0.2,则的平均数和方差分别为14和1.8;②若两个变量的线性相关性越强,则相关系数r的值越接近于1.③对A、B、C三种个体按3:1:2的比例进行分层抽样调查,若抽取的A种个体有15个,则样本容量为30.则正确的个数是().A.3 B.2C.1 D.07.2021年6月17日9时22分,搭载神舟十二号载人飞船的长征二号F遥十二运载火箭,在酒泉卫星发射中心点火发射.此后,神舟十二号载人飞船与火箭成功分离,进入预定轨道,并快速完成与“天和”核心舱的对接,聂海胜、刘伯明、汤洪波3名宇航员成为核心舱首批“入住人员”,并在轨驻留3个月,开展舱外维修维护,设备更换,科学应用载荷等一系列操作.已知神舟十二号飞船的运行轨道是以地心为焦点的椭圆,设地球半径为R,其近地点与地面的距离大约是,远地点与地面的距离大约是,则该运行轨道(椭圆)的离心率大约是()A. B.C. D.8.命题“若α=,则tanα=1”的逆否命题是A.若α≠,则tanα≠1 B.若α=,则tanα≠1C.若tanα≠1,则α≠ D.若tanα≠1,则α=9.已知直线l和抛物线交于A,B两点,O为坐标原点,且,交AB于点D,点D的坐标为,则p的值为()A. B.1C. D.210.已知公差为的等差数列满足,则()A B.C. D.11.已知椭圆:与双曲线:有相同的焦点、,椭圆的离心率为,双曲线的离心率为,点P为椭圆与双曲线的交点,且,则的最大值为()A. B.C. D.12.已知a,b为正实数,且,则的最小值为()A.1 B.2C.4 D.6二、填空题:本题共4小题,每小题5分,共20分。13.随机投掷一枚均匀的硬币两次,则两次都正面朝上的概率为______14.已知曲线表示焦点在轴上的双曲线,则符合条件的的一个整数值为______.15.若实数、满足,则的取值范围为___________.16.定义在上的函数满足:有成立且,则不等式的解集为__________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在等差数列中,,前10项和(1)求列的通项公式;(2)若数列是首项为1,公比为2的等比数列,求的前8项和18.(12分)已知抛物线的顶点在原点,焦点在轴上,且抛物线上有一点到焦点的距离为3,直线与抛物线交于,两点,为坐标原点(1)求抛物线的方程;(2)求的面积.19.(12分)如图,在几何体中,底面是边长为2的正三角形,平面,,且是的中点.(1)求证:平面;(2)求二面角的余弦值.20.(12分)已知等差数列的前项和为,且,(1)求数列的通项公式;(2)若数列满足,求数列的前项和21.(12分)如图,点是曲线上的动点(点在轴左侧),以点为顶点作等腰梯形,使点在此曲线上,点在轴上.设,等腰梯的面积为.(1)写出函数的解析式,并求出函数的定义域;(2)当为何值时,等腰梯形的面积最大?求出最大面积.22.(10分)已知圆内有一点,过点P作直线l交圆C于A,B两点.(1)当P为弦的中点时,求直线l的方程;(2)若直线l与直线平行,求弦的长.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据分布列性质计算可得;【详解】解:依题意,解得,所以;故选:C2、C【解析】设图中直角三角形边长分别为a,b,则斜边为,则可表示出阴影面积和正方形面积,根据图象关系,可得即可得答案.【详解】设图中全等的直角三角形的边长分别为a,b,则斜边为,如图所示:则四个直角三角形的面积为,正方形的面积为,由图象可得,四个直角三角形面积之和小于等于正方形的面积,所以,当且仅当时等号成立,所以对任意实数和,有,当且仅当时等号成立.故选:C3、D【解析】根据等比数列性质可知,,,成等比数列,由等比中项特点可构造方程求得,由等比数列通项公式可求得,进而得到结果.【详解】由等比数列的性质可得:,,,成等比数列,则,即,解得:,,,解得:.故选:D.4、D【解析】求出、坐标可得直线的方程,与抛物线方程联立求出,根据选项可得答案,【详解】把代入得,所以,所以直线的方程为即,与抛物线方程联立解得,所以,因为反射光线平行于y轴,根据选项可得D正确,故选:D5、C【解析】由点的坐标求得参数,再由焦半径公式得结论【详解】由题意,解得,所以,故选:C6、B【解析】对结论逐一判断【详解】对于①,则的平均数为,方差为,故①正确对于②,若两个变量的线性相关性越强,则相关系数r的绝对值越接近于1,故②错误对于③,对A、B、C三种个体按3:1:2的比例进行分层抽样调查,若抽取的A种个体有15个,则样本容量为,故③正确故正确结论为2个故选:B7、A【解析】以运行轨道长轴所在直线为x轴,地心F为右焦点建立平面直角坐标系,设椭圆方程为,根据题意列出方程组,解方程组即可.【详解】以运行轨道长轴所在直线为x轴,地心F为右焦点建立平面直角坐标系,设椭圆方程为,其中,根据题意有,,所以,,所以椭圆的离心率故选:A8、C【解析】因为“若,则”的逆否命题为“若,则”,所以“若α=,则tanα=1”的逆否命题是“若tanα≠1,则α≠”.【点评】本题考查了“若p,则q”形式的命题的逆命题、否命题与逆否命题,考查分析问题的能力.9、B【解析】由垂直关系得出直线l方程,联立直线和抛物线方程,利用韦达定理以及数量积公式得出p的值.【详解】,,即联立直线和抛物线方程得设,则解得故选:B10、C【解析】根据等差数列前n项和,即可得到答案.【详解】∵数列是公差为的等差数列,∴,∴.故选:C11、B【解析】不妨设点为第一象限的交点,结合椭圆与双曲线的定义得到,进而结合余弦定理得到,即,令然后结合三角函数即可求出结果.【详解】不妨设点为第一象限的交点,则由椭圆的定义可得,由双曲线的定义可得,所以,因此,即,所以,即,令因此,其中,所以当时,有最大值,最大值为,故选:B.【点睛】一、椭圆的离心率是椭圆最重要的几何性质,求椭圆的离心率(或离心率的取值范围),常见有两种方法:①求出a,c,代入公式;②只需要根据一个条件得到关于a,b,c的齐次式,结合b2=a2-c2转化为a,c的齐次式,然后等式(不等式)两边分别除以a或a2转化为关于e的方程(不等式),解方程(不等式)即可得e(e的取值范围)二、双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出a,c,代入公式;②只需要根据一个条件得到关于a,b,c的齐次式,结合b2=c2-a2转化为a,c的齐次式,然后等式(不等式)两边分别除以a或a2转化为关于e的方程(不等式),解方程(不等式)即可得e(e的取值范围)12、D【解析】利用基本不等式“1”的妙用求最值.【详解】因为a,b为正实数,且,所以.当且仅当,即时取等号.故选:D二、填空题:本题共4小题,每小题5分,共20分。13、##【解析】列举出所有情况,利用古典概型的概率公式求解即可【详解】随机投掷一枚均匀的硬币两次,共有:正正,正反,反正,反反共4种情况,两次都是正面朝上的有:正正1种情况,所以两次都正面朝上的概率为,故答案为:14、.(答案不唯一)【解析】给出一个符合条件的值即可.【详解】当时,曲线表示焦点在轴上的双曲线,故答案为:.(答案不唯一)15、【解析】直接利用换元法以及基本不等式,求出结果【详解】解:设,由于,所以,由于,(当且仅当时取等号)所以(当且仅当时取等号),(当且仅当时取等号),故,,所以,整理得:故的取值范围为的取值范围故答案为:16、【解析】由,判断出函数的单调性,利用单调性解即可【详解】设,又有成立,函数,即是上的增函数,,即,,故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)347.【解析】(1)设等差数列的公差为,解方程组即得解;(2)先求出,再分组求和得解.【详解】解:(1)设等差数列的公差为,则解得所以(2)由题意,,所以所以的前8项和为18、(1);(2)【解析】(1)由题意可设抛物线的方程为y2=2px(p>0),运用抛物线的定义,可得23,解得p=2,进而得到抛物线的方程;(2)由题意,直线AB方程为y=x﹣1,与y2=4x消去y得:x2﹣6x+1=0.再用一元二次方程根与系数的关系和弦长公式,算出|AB|;利用点到直线的距离公式算出点O到直线AB的距离,即可求出△AOB的面积【详解】(1)抛物线C的顶点在原点,焦点在x轴上,且过一点P(2,m),可设抛物线的方程为y2=2px(p>0),P(2,m)到焦点的距离为3,即有P到准线的距离为6,即23,解得p=2,即抛物线的标准方程为y2=4x;(2)联立方程化简,得x2﹣6x+1=0设交点为A(x1,y1),B(x2,y2)∴x1+x2=6,x1x2=1可得|AB||x1﹣x2|=8点O到直线l的距离d,所以△AOB的面积为S|AB|•d82【点睛】本题考查抛物线的方程的求法及抛物线定义的应用,考查待定系数法的运用,考查求焦点弦AB与原点构成的△AOB面积,属于中档题19、(1)证明见解析(2)【解析】(1)取的中点F,连接EF,,由四边形是平行四边形即可求解;(2)采用建系法,以为轴,为轴,垂直底面方向为轴,求出对应点坐标,结合二面角夹角余弦公式即可求解.【小问1详解】取的中点F,连接EF,,∵,∴,且,∴,∴四边形是平行四边形,∴,又平面,平面,∴平面;【小问2详解】取AC的中点O,以O为坐标原点,建立如图所示的空间直角坐标系,则,,,∴,.设平面的法向量是,则,即,令,得,易知平面的一个法向量是,∴,又二面角是钝二面角,∴二面角的余弦值为.20、(1);(2).【解析】(1)设等差数列的公差为,根据已知条件可得出关于、的方程组,解出这两个量的值,即可求得数列的通项公式;(2)求得,利用裂项相消法可求得.【小问1详解】解:设等差数列公差为,,【小问2详解】解:,.21、(1);(2)当时取到最大值,【解析】(1)设点,则根据题意得,,故;(2)令,研究函数的单调性,进而得的最值,进而得的最大值.【详解】解:(1)根据题意,设点,由是曲线上的动点得:,由于椭圆与轴交点为,故,所以即:(2)结合(1),对两边平方得:,令,则,所以当时,,当时,,所以在区间单调递增,在上单调递减,所
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年滦镇中心卫生院招聘备考题库完整参考答案详解
- 2026年玉环市少年儿童业余体校关于招聘编外工作人员的备考题库有答案详解
- 2026年杭州市钱江湾小学招聘非编语文教师备考题库完整答案详解
- 2026年社招+校招四川省宜宾五粮液集团进出口有限公司公开招聘5人备考题库及一套完整答案详解
- 2026年郫都区中信大道幼儿园招聘教师备考题库带答案详解
- 2026年济南宝钢钢材加工配送有限公司招聘备考题库含答案详解
- 养老院入住老人遗愿实施与尊重制度
- 2026年派遣制阜阳市妇女儿童医院人员招聘11人备考题库及答案详解参考
- 企业内部保密工作责任追究制度
- 2025年医疗护理操作规范与质量监控指南
- 66kV及以下架空电力线路设计标准
- 人工搬运培训课件
- 2025年浙江乍浦经济开发区(嘉兴港区)区属国有公司公开招聘28人笔试考试备考试题及答案解析
- 胃肠外科危重患者监护与护理
- 建筑施工异常工况安全处置指南
- 2025年榆林神木市信息产业发展集团招聘备考题库(35人)及答案详解(新)
- 2025年公务员时事政治热点试题解析+答案
- 销售人员销售技能培训
- 免疫联合治疗的生物样本库建设
- 项目管理沟通矩阵及问题跟进器
- 交通运输企业人力资源管理中存在的问题及对策
评论
0/150
提交评论