陕西省蓝田县2026届高二上数学期末调研模拟试题含解析_第1页
陕西省蓝田县2026届高二上数学期末调研模拟试题含解析_第2页
陕西省蓝田县2026届高二上数学期末调研模拟试题含解析_第3页
陕西省蓝田县2026届高二上数学期末调研模拟试题含解析_第4页
陕西省蓝田县2026届高二上数学期末调研模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

陕西省蓝田县2026届高二上数学期末调研模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知点、为椭圆的左、右焦点,若点为椭圆上一动点,则使得的点的个数为()A. B.C. D.不能确定2.函数的导函数为,若已知图象如图,则下列说法正确的是()A.存在极大值点 B.在单调递增C.一定有最小值 D.不等式一定有解3.经过点A(0,-3)且斜率为2的直线方程为()A. B.C. D.4.已知等差数列的公差为,则“”是“数列为单调递增数列”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件5.如图,双曲线的左,右焦点分别为,,过作直线与C及其渐近线分别交于Q,P两点,且Q为的中点.若等腰三角形的底边的长等于C的半焦距.则C的离心率为()A. B.C. D.6.椭圆以坐标轴为对称轴,经过点,且长轴长是短轴长的倍,则椭圆的标准方程为()A. B.C.或 D.或7.若函数的图象如图所示,则函数的导函数的图象可能是()A. B.C D.8.如图,在四面体中,,,,点为的中点,,则()A. B.C. D.9.已知是和的等比中项,则圆锥曲线的离心率为()A. B.或2C. D.或10.已知长方体中,,,则平面与平面所成的锐二面角的余弦值为()A. B.C. D.11.已知是上的单调增函数,则的取值范围是A.﹣1b2 B.﹣1b2C.b﹣2或b2 D.b﹣1或b212.已知函数,则的单调递增区间为().A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在中,,,,则__________.14.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层灯数为_____________15.将全体正整数排成一个三角形数阵:按照以上排列的规律,第行从左向右的第2个数为____________.16.若圆和圆的公共弦所在的直线方程为,则______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知圆经过点和,且圆心在直线上.(1)求圆的方程;(2)过原点的直线与圆交于M,N两点,若的面积为,求直线的方程.18.(12分)已知数列满足,,数列前项和为.(1)求数列,的通项公式;(2)表示不超过的最大整数,如,设的前项和为,令,求证:.19.(12分)如图,OP为圆锥的高,AB为底面圆O的直径,C为圆O上一点,并且,E为劣弧上的一点,且,.(1)若E为劣弧的中点,求证:平面POE;(2)若E为劣弧的三等分点(靠近点),求平面PEO与平面PEB的夹角的余弦值.20.(12分)设函数.(1)若在点处的切线为,求a,b的值;(2)求的单调区间.21.(12分)如图,在四棱锥中,底面,,是的中点,,.(1)证明:;(2)求直线与平面所成角的正弦值.22.(10分)已知圆C的圆心C在直线上,且与直线相切于点.(1)求圆C的方程;(2)过点的直线与圆C交于两点,线段的中点为M,直线与直线的交点为N.判断是否为定值.若是,求出这个定值,若不是,说明理由.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】利用余弦定理结合椭圆的定义可求得、,即可得出结论.【详解】在椭圆中,,,,则,,可得,所以,,解得,此时点位于椭圆短轴的顶点.因此,满足条件的点的个数为.故选:B.2、C【解析】根据图象可得的符号,从而可得的单调区间,再对选项进行逐一分析判断正误得出答案.【详解】由所给的图象,可得当时,,当时,,当时,,当时,,可得在递减,递增;在递减,在递增,B错误,且知,所以存在极小值和,无极大值,A错误,同时无论是否存在,可得出一定有最小值,但是最小值不一定为负数,故C正确,D错误.故选:C.3、A【解析】直接代入点斜式方程求解即可详解】因为直线经过点且斜率为2,所以直线的方程为,即,故选:4、C【解析】利用等差数列的定义和数列单调性的定义判断可得出结论.【详解】若,则,即,此时,数列为单调递增数列,即“”“数列为单调递增数列”;若等差数列为单调递增数列,则,即“”“数列为单调递增数列”.因此,“”是“数列为单调递增数列”的充分必要条件.故选:C.5、C【解析】先根据等腰三角形的性质得,再根据双曲线定义以及勾股定理列方程,解得离心率.【详解】连接,由为等腰三角形且Q为的中点,得,由知.由双曲线的定义知,在中,,(负值舍去)故选:C【点睛】本题考查双曲线的定义、双曲线的离心率,考查基本分析求解能力,属基础题.6、C【解析】分情况讨论焦点所在位置及椭圆方程.【详解】当椭圆的焦点在轴上时,由题意过点,故,,椭圆方程为,当椭圆焦点在轴上时,,,椭圆方程为,故选:C.7、C【解析】由函数的图象可知其单调性情况,再由导函数与原函数的关系即可得解.【详解】由函数的图象可知,当时,从左向右函数先增后减,故时,从左向右导函数先正后负,故排除AB;当时,从左向右函数先减后增,故时,从左向右导函数先负后正,故排除D.故选:C.8、B【解析】利用插点的方法,将归结到题目中基向量中去,注意中线向量的运用.【详解】.故选:B.9、B【解析】由等比中项的性质可得,分别计算曲线的离心率.【详解】由是和的等比中项,可得,当时,曲线方程为,该曲线为焦点在轴上的椭圆,离心率,当时,曲线方程为,该曲线为焦点在轴上的双曲线,离心率,故选:B.10、A【解析】建立空间直角坐标系,求得平面的一个法向量为,易知平面的一个法向量为,由求解.【详解】建立如图所示空间直角坐标系:则,所以,设平面的一个法向量为,则,即,令,则,易知平面的一个法向量为,所以,所以平面与平面所成的锐二面角的余弦值为,故选:A11、A【解析】利用三次函数的单调性,通过其导数进行研究,求出导数,利用其导数恒大于0即可解决问题【详解】∵∴∵函数是上的单调增函数∴在上恒成立∴,即.∴故选A.【点睛】可导函数在某一区间上是单调函数,实际上就是在该区间上(或)(在该区间的任意子区间都不恒等于0)恒成立,然后分离参数,转化为求函数的最值问题,从而获得参数的取值范围,本题是根据相应的二次方程的判别式来进行求解.12、D【解析】利用导数分析函数单调性【详解】的定义域为,,令,解得故的单调递增区间为故选:D二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由已知在中利用余弦定理可得的值,可求,可得,即可得解的值【详解】解:因为在中,,,,所以由余弦定理可得,所以,即,则故答案为:14、3【解析】分析:设塔的顶层共有a1盏灯,则数列{an}公比为2的等比数列,利用等比数列前n项和公式能求出结果详解:设塔的顶层共有a1盏灯,则数列{an}公比为2的等比数列,∴S7==381,解得a1=3.故答案为3.点睛:本题考查了等比数列的通项公式与求和公式,考查了推理能力与计算能力.15、【解析】通过观察、分析、归纳,找出规律运算求解即可【详解】前行共有正整数个,即个,因此第行第个数是全体正整数中第个,即为故答案为:16、【解析】由两圆公共弦方程,将两圆方程相减得到,结合已知列方程组求、,即可得答案.【详解】由题设,两圆方程相减可得:,即为公共弦,∴,可得,∴.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)直线的方程为或或【解析】(1)由弦的中垂线与直线的交点为圆心即可求解;(2)由,可得或,进而有或,显然直线斜率存在,设直线,由点到直线的距离公式求出的值即可得答案.【小问1详解】解:设弦的中点为,则有,因为,所以直线,所以直线的中垂线为,则圆心在直线上,且在直线上,联立方程解得圆心,则圆的半径为,所以圆方程为;【小问2详解】解:设圆心到直线的距离为,因为,所以或,所以或,显然直线斜率存在,所以设直线,则或,解得或或,故直线的方程为或或.18、(1),(2)证明见解析【解析】(1)利用累加法求通项公式,利用通项公式与前n项和公式的关系可求的通项公式;(2)求出并判断其范围,求出,利用裂项相消法求的前n项和即可证明.【小问1详解】由题可知,当n≥2时,=当n=1时,也符合上式,∴;当时,,当n=1时,也符合上式,∴;【小问2详解】由(1)知,∴,∵,;∵,,,,,∴设为数列的前n项和,则.19、(1)证明见解析(2)【解析】(1)推导出平面,,,由此能证明平面(2)推导出,,以为原点,为轴,为轴,为轴,建立空间直角坐标系,利用向量法能求出二面角的余弦值【小问1详解】证明:为圆锥的高,平面,又平面,,为劣弧的中点,,,平面,平面【小问2详解】解:解:为劣弧的三等分点(靠近点,为底面圆的直径,为圆上一点,并且,,以为原点,为轴,为轴,为轴,建立空间直角坐标系,,0,,,0,,,,,,0,,,3,,0,,,,,,,,,3,设平面的法向量,,,则,取,得,,,设平面的法向量,,,则,取,得,1,,设二面角的平面角为,则,二面角的余弦值为20、(1),;(2)答案见解析.【解析】(1)已知切线求方程参数,第一步求导,切点在曲线,切点在切线,切点处的导数值为切线斜率.(2)第一步定义域,第二步求导,第三步令导数大于或小于0,求解析,即可得到答案.【小问1详解】的定义域为,,因为在点处的切线为,所以,所以;所以把点代入得:.即a,b的值为:,.【小问2详解】由(1)知:.①当时,在上恒成立,所以在单调递减;②当时,令,解得:,列表得:x-0+单调递减极小值单调递增所以,时,的递减区间为,单增区间为.综上所述:当时,在单调递减;当时,的递减区间为,单增区间为.【点睛】导函数中得切线问题第一步求导,第二步列切点在曲线,切点在切线,切点处的导数值为切线斜率这三个方程,可解切线相关问题.21、(1)证明见解析(2)【解析】(1)建立空间直角坐标系,分别求出向量和,证明即可;(2)先求出和平面的法向量,然后利用公式求出,则直线与平面所成角的正弦值即为.【小问1详解】证明:∵,,∴△≌△,∴,设,在△中,由余弦定理得,即,则,即,,连接交于点,分别以,为轴、轴,过作轴,建立如图空间直角坐标系,则,,,,,,的中点,则,,∵,∴.【小问2详解】由(1)可知,,,,设平面的法向量为,则,即,令,则,即,则,记直线与平面所成角为,.22、(1)(2)【解析】(1)设过点且与直线垂直的直线为,将代入直线方程,即可求出,再与求交点坐标,得到圆心坐标,再求出半径,即可得解;(2)分直线的斜率存在与不存在两种情况讨论,当斜率不存在

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论