2026届A佳教育大联盟高一数学第一学期期末考试试题含解析_第1页
2026届A佳教育大联盟高一数学第一学期期末考试试题含解析_第2页
2026届A佳教育大联盟高一数学第一学期期末考试试题含解析_第3页
2026届A佳教育大联盟高一数学第一学期期末考试试题含解析_第4页
2026届A佳教育大联盟高一数学第一学期期末考试试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届A佳教育大联盟高一数学第一学期期末考试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数关于直线对称,且当时,恒成立,则满足的x的取值范围是()A. B.C. D.2.要得到函数的图象,只需要将函数的图象A.向左平移个单位B.向右平移个单位C.向左平移个单位D.向右平移个单位3.已知集合,则()A. B.C. D.4.将函数,且,下列说法错误的是()A.为偶函数 B.C.若在上单调递减,则的最大值为9 D.当时,在上有3个零点5.在空间直角坐标系中,一个三棱锥的顶点坐标分别是,,,.则该三棱锥的体积为()A. B.C. D.26.心理学家有时用函数测定在时间t(单位:min)内能够记忆的量L,其中A表示需要记忆的量,k表示记忆率.假设一个学生需要记忆的量为200个单词,此时L表示在时间t内该生能够记忆的单词个数.已知该生在5min内能够记忆20个单词,则k的值约为(,)A.0.021 B.0.221C.0.461 D.0.6617.函数,若,,,则()A. B.C. D.8.命题“∃x>0,x2=x﹣1”的否定是()A.∃x>0,x2≠x﹣1 B.∀x≤0,x2=x﹣1C.∃x≤0,x2=x﹣1 D.∀x>0,x2≠x﹣19.在下列函数中,最小值为2的是()A.(且) B.C. D.10.某工厂设计了一款纯净水提炼装置,该装置可去除自来水中的杂质并提炼出可直接饮用的纯净水,假设该装置每次提炼能够减少水中50%的杂质,要使水中的杂质不超过原来的4%,则至少需要提炼的次数为()(参考数据:取)A.5 B.6C.7 D.8二、填空题:本大题共6小题,每小题5分,共30分。11.函数,若最大值为,最小值为,,则的取值范围是______.12.当时,的最小值为______13.圆的圆心到直线的距离为______.14.已知,则_________.15.写出一个最小正周期为2的奇函数________16.设、为平面向量,若存在不全为零的实数λ,μ使得λμ0,则称、线性相关,下面的命题中,、、均为已知平面M上的向量①若2,则、线性相关;②若、为非零向量,且⊥,则、线性相关;③若、线性相关,、线性相关,则、线性相关;④向量、线性相关的充要条件是、共线上述命题中正确的是(写出所有正确命题的编号)三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设集合,,.(1)求,;(2)若,求;(3)若,求的取值范围.18.已知二次函数满足对任意,都有;;的图象与轴的两个交点之间的距离为.(1)求的解析式;(2)记,(i)若为单调函数,求的取值范围;(ii)记的最小值为,若方程有两个不等的根,求的取值范围.19.已知函数.(1)判断函数的奇偶性,并说明理由;(2)若实数满足,求的值.20.已知二次函数的图象与轴、轴共有三个交点.(1)求经过这三个交点的圆的标准方程;(2)当直线与圆相切时,求实数的值;(3)若直线与圆交于两点,且,求此时实数的值.21.已知函数.(1)若函数在是增函数,求的取值范围;(2)若对于任意的,恒成立,求的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】根据题意,得到函数为偶函数,且在为单调递减函数,则在为单调递增函数,把不等式,转化为,即可求解.【详解】由题意,函数关于直线对称,所以函数为偶函数,又由当时,恒成立,可得函数在为单调递减函数,则在为单调递增函数,因为,可得,即或,解得或,即不等式的解集为,即满足的x的取值范围是.故选:B.2、B【解析】因为函数,要得到函数的图象,只需要将函数的图象向右平移个单位本题选择B选项.点睛:三角函数图象进行平移变换时注意提取x的系数,进行周期变换时,需要将x的系数变为原来的ω倍,要特别注意相位变换、周期变换的顺序,顺序不同,其变换量也不同3、D【解析】求出集合A,再求A与B的交集即可.【详解】∵,∴.故选:D.4、C【解析】先求得,然后结合函数的奇偶性、单调性、零点对选项进行分析,从而确定正确选项.【详解】,,所以,为偶函数,A选项正确.,B选项正确.,若在上单调递减,则,,由于,所以,所以的最大值为,的最大值为,C选项错误.当时,,,当时,,所以D选项正确.故选:C5、A【解析】由题,在空间直角坐标系中找到对应的点,进而求解即可【详解】由题,如图所示,则,故选:A【点睛】本题考查三棱锥的体积,考查空间直角坐标系的应用6、A【解析】由题意得出,再取对数得出k的值.【详解】由题意可知,所以,解得故选:A7、A【解析】首先判断,和的大小关系,然后根据函数的单调性,判断的大小关系.【详解】,,,,,,是上的减函数,.故选:A.8、D【解析】根据特称命题的否定是全称命题的知识选出正确结论.【详解】因为特称命题的否定是全称命题,注意到要否定结论,所以:命题“∃x>0,x2=x﹣1”的否定是:∀x>0,x2≠x﹣1故选:D【点睛】本小题主要考查全称命题与特称命题,考查特称命题的否定,属于基础题.9、C【解析】根据基本不等式的使用条件,对四个选项分别进行判断,得到答案.【详解】选项A,当时,,所以最小值为不正确;选项B,因为,所以,所以,当且仅当,即时等号成立,而,所以等号不成立,所以不正确;选项C,因为,所以,当且仅当,即时,等号成立,所以正确;选项D,因为,所以,所以,当且仅当,即时,等号成立,而,所以不正确.故选:C.【点睛】本题考查基本不等式求和的最小值,基本不等式的使用条件,属于简单题.10、A【解析】根据题意列出相应的不等式,利用对数值计算可得答案.【详解】设经过次提炼后,水中的杂质不超过原来的4%,由题意得,得,所以至少需要5次提炼,故选:A.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】先化简,然后分析的奇偶性,将的最大值和小值之和转化为和有关的式子,结合对勾函数的单调性求解出的取值范围.【详解】,令,定义域为关于原点对称,∴,∴为奇函数,∴,∴,,由对勾函数的单调性可知在上单调递减,在上单调递增,∴,,,∴,∴,故答案为:.【点睛】关键点点睛:解答本题的关键在于函数奇偶性的判断,同时需要注意到奇函数在定义域上如果有最值,那么最大值和最小值一定是互为相反数.12、【解析】将所求代数式变形为,利用基本不等式即可求解.【详解】因为,所以,所以,当且仅当即时等号成立,所以的最小值为,故答案为:.13、1【解析】利用点到直线的距离公式可得所求的距离.【详解】圆心坐标为,它到直线的距离为,故答案为:1【点睛】本题考查圆的标准方程、点到直线的距离,此类问题,根据公式计算即可,本题属于基础题.14、【解析】由题意可得:点睛:熟记同角三角函数关系式及诱导公式,特别是要注意公式中的符号问题;注意公式的变形应用,如sin2α=1-cos2α,cos2α=1-sin2α,1=sin2α+cos2α及sinα=tanα·cosα等.这是解题中常用到的变形,也是解决问题时简化解题过程的关键所在15、【解析】根据奇函数性质可考虑正弦型函数,,再利用周期计算,选择一个作答即可.【详解】由最小正周期为2,可考虑三角函数中的正弦型函数,,满足,即是奇函数;根据最小正周期,可得.故函数可以是中任一个,可取.故答案为:.16、①④【解析】利用和线性相关等价于和是共线向量,故①正确,②不正确,④正确.通过举反例可得③不正确【详解】解:若、线性相关,假设λ≠0,则,故和是共线向量反之,若和是共线向量,则,即λμ0,故和线性相关故和线性相关等价于和是共线向量①若2,则20,故和线性相关,故①正确②若和为非零向量,⊥,则和不是共线向量,不能推出和线性相关,故②不正确③若和线性相关,则和线性相关,不能推出若和线性相关,例如当时,和可以是任意的两个向量.故③不正确④向量和线性相关的充要条件是和是共线向量,故④正确故答案为①④【点睛】本题考查两个向量线性相关的定义,两个向量共线的定义,明确和线性相关等价于和是共线向量,是解题的关键三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),(2)(3)【解析】(1)先可求出,再利用交集,并集运算求解即可;(2)由(1)得,然后代入,即可求得;(3)由可得到,解不等式组求出的范围即可.【详解】(1)由已知得,所以,;(2)由(1)得,当时,,所以.;(3)因为,所以,解得.【点睛】本题考查集合的交并补的运算,考查集合的包含关系的含义,是基础题.18、(1);(2)(i);(ii)或.【解析】(1)根据二次函数的对称轴、求参数a、b、c,写出的解析式;(2)(i)利用二次函数的性质,结合的区间单调性求的取值范围;(ii)讨论、、,结合二次函数的性质求最小值的表达式,再令并应用数形结合的方法研究的零点情况求的取值范围.【详解】(1)设由题意知:对称轴,,又,则,,设的两根为,,则,,由已知:,解得.(2)(i),其对称轴为为单调函数,或,解得或.的取值范围是.(ii),,对称轴①当,即时,区间单调递增,.②当,即时,在区间单调递减,③当,即时,,函数零点即为方程的根令,即,作出的简图如图所示①当时,,或,解得或,有个零点;②当时,有唯一解,解得,有个零点;③当时,有两个不同解,,解得或,有4个零点;④当时,,,解得,有个零点;⑤当时,无解,无零点综上:当或时,有个零点.【点睛】关键点点睛:第二问,(i)分类讨论并结合二次函数区间单调性求参数范围,(ii)分类讨论求最小值的表达式,再应用换元法及数形结合求参数范围.19、(1)偶函数,理由见详解;(2)或.【解析】(1)根据函数定义域,以及的关系,即可判断函数奇偶性;(2)根据的单调性以及对数运算,即可求得参数的值.【小问1详解】偶函数,理由如下:因为,其定义域为,关于原点对称;又,故是偶函数.【小问2详解】在单调递增,在单调递减,证明如下:设,故,因为,故,则,又,故,则,故,则故在单调递增,又为偶函数,故在单调递减;因为,又在单调递增,在单调递减,故或.20、(1);(2)或;(3)【解析】(1)先求出二次函数的图象与坐标轴的三个交点的坐标,然后根据待定系数法求解可得圆的标准方程;(2)根据圆心到直线的距离等于半径可得实数的值;(3)结合弦长公式可得所求实数的值【详解】(1)在中,令,可得;令,可得或所以三个交点分别为,,,设圆的方程为,将三个点的坐标代入上式得,解得,所以圆的方程为,化为标准方程为:(2)由(1)知圆心,因为直线与圆相切,所以,解得或,所以实数的值为或(3)由题意得圆心到直线的距离,又,所以,则,解得所以实数的值为或【点睛】(1)求圆的方程时常用的方法有两种:一是几何法,即求出圆的圆心和半径即可得到圆的方程;二是用待定系数法,即通过代数法求出圆

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论