2026届山东省滨州市十二校联考数学高一上期末教学质量检测试题含解析_第1页
2026届山东省滨州市十二校联考数学高一上期末教学质量检测试题含解析_第2页
2026届山东省滨州市十二校联考数学高一上期末教学质量检测试题含解析_第3页
2026届山东省滨州市十二校联考数学高一上期末教学质量检测试题含解析_第4页
2026届山东省滨州市十二校联考数学高一上期末教学质量检测试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届山东省滨州市十二校联考数学高一上期末教学质量检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.是边长为1的等边三角形,点分别是边的中点,连接并延长到点,使得,则的值为()A. B.C. D.2.若,则的最小值是()A.1 B.2C.3 D.43.命题“”的否定为()A. B.C. D.4.,,,则的大小关系为()A. B.C. D.5.下列函数中,既是奇函数又存在零点的函数是()A. B.C. D.6.已知一个几何体的三视图如图所示,其中俯视图为半圆画,则该几何体的体积为()A B.C. D.7.若,是第二象限的角,则的值等于()A. B.7C. D.-78.若,则等于A. B.C. D.9.一个扇形的弧长与面积都是5,则这个扇形圆心角的弧度数为A. B.C. D.10.下列向量的运算中,正确的是A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在单位圆中,已知角的终边与单位圆的交点为,则______12.若,则的定义域为____________.13.制造一种零件,甲机床的正品率为,乙机床的正品率为.从它们制造的产品中各任抽1件,则两件都是正品的概率是__________14.半径为2cm,圆心角为的扇形面积为.15.边长为2的菱形中,,将沿折起,使得平面平面,则二面角的余弦值为__________16.已知函数,其所有的零点依次记为,则_________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在①是函数图象的一条对称轴,②函数的最大值为2,③函数图象与y轴交点的纵坐标是1这三个条件中选取两个补充在下面题目中,并解答已知函数,______(1)求的解析式;(2)求在上的值域18.已知函数,,且在上的最小值为0.(1)求的最小正周期及单调递增区间;(2)求的最大值以及取得最大值时x的取值集合.19.经市场调查,某超市的一种小商品在过去的近20天内的销售量(件)与价格(元)均为时间t(天)的函数,且销售量近似满足g(t)=80-2t,价格近似满足f(t)=20-|t-10|.(1)试写出该种商品的日销售额y与时间t(0≤t≤20)的函数表达式;(2)求该种商品的日销售额y的最大值与最小值.20.如图,已知等腰梯形中,,,是的中点,,将沿着翻折成,使平面平面.(1)求证:平面;(2)求与平面所成的角;(3)在线段上是否存在点,使得平面,若存在,求出的值;若不存在,说明理由.21.函数的最小值为.(1)求;(2)若,求a及此时的最大值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】设,,∴,,,∴.【考点】向量数量积【名师点睛】研究向量的数量积问题,一般有两个思路,一是建立直角坐标系,利用坐标研究向量数量积;二是利用一组基底表示所有向量,两种实质相同,坐标法更易理解和化简.平面向量的坐标运算的引入为向量提供了新的语言——“坐标语言”,实质是将“形”化为“数”.向量的坐标运算,使得向量的线性运算都可用坐标来进行,实现了向量运算完全代数化,将数与形紧密结合起来2、C【解析】采用拼凑法,结合基本不等式即可求解.【详解】因为,,当且仅当时取到等号,故的最小值是3.故选:C3、C【解析】“若,则”的否定为“且”【详解】根据命题的否定形式可得:原命题的否定为“”故选:C4、D【解析】根据对数函数的单调性得到,根据指数函数的单调性得到,根据正弦函数的单调性得到.【详解】易知,,因,函数在区间内单调递增,所以,所以.故选:D.5、A【解析】判断函数的奇偶性,可排除选项得出正确答案【详解】因为是偶函数,故B错误;是非奇非偶函数,故C错误;是非奇非偶函数,故D错误;故选:A.6、C【解析】由三视图可知,该几何体为半个圆柱,故体积为.7、B【解析】先由同角三角函数关系式求出,再利用两角差的正切公式即可求解.【详解】因为,是第二象限的角,所以,所以.所以.故选:B8、B【解析】,.考点:三角恒等变形、诱导公式、二倍角公式、同角三角函数关系第II卷(非选择题9、D【解析】,又,故选D考点:扇形弧长公式10、C【解析】利用平面向量的三角形法则进行向量的加减运算,即可得解.【详解】对于A,,故A错误;对于B,,故B错误;对于C,,故C正确;对于D,,故D错误.故选:C.【点睛】本题考查平面向量的三角形法则,属于基础题.解题时,要注意向量的起点和终点.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】先由三角函数定义得,再由正切的两角差公式计算即可.【详解】由三角函数的定义有,而.故答案为:12、【解析】使表达式有意义,解不等式组即可.【详解】由题,解得,即,故答案为:.【点晴】此题考函数定义域的求法,属于简单题.13、【解析】由独立事件的乘法公式求解即可.【详解】由独立事件的乘法公式可知,两件都是正品的概率是.故答案为:14、【解析】求出扇形的弧长,利用扇形面积公式求解即可.【详解】因为半径为,圆心角为的扇形,弧长为,所以扇形面积为:故答案为.【点睛】本题考查扇形的面积公式的应用,考查计算能力,属于基础题.15、【解析】作,则为中点由题意得面作,连则为二面角的平面角故,,点睛:本题考查了由平面图形经过折叠得到立体图形,并计算二面角的余弦值,本题关键在于先找出二面角的平面角,依据定义先找出平面角,然后根据各长度,计算得结果16、16【解析】由零点定义,可得关于的方程.去绝对值分类讨论化简.将对数式化为指数式,再去绝对值可得四个方程.结合韦达定理,求得各自方程两根的乘积,即可得所有根的积.【详解】函数的零点即所以去绝对值可得或即或去绝对值可得或,或当,两边同时乘以,化简可得,设方程的根为.由韦达定理可得当,两边同时乘以,化简可得,设方程的根为.由韦达定理可得当,两边同时乘以,化简可得,设方程的根为.由韦达定理可得当,两边同时乘以,化简可得,设方程的根为.由韦达定理可得综上可得所有零点的乘积为故答案为:【点睛】本题考查了函数零点定义,含绝对值方程的解法,分类讨论思想的应用,由韦达定理研究方程根的关系,属于难题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)条件选择见解析,;(2).【解析】(1)选择①②直接求出A及的解;选择①③,先求出,再由求A作答;选择②③,直接可得A,再由求作答.(2)由(1)结合正弦函数的性质即可求得在上的值域.【小问1详解】选择①②,,由及得:,所以的解析式是:.选择①③,由及得:,即,而,则,即,解得,所以的解析式是:.选择②③,,而,即,又,则有,所以的解析式是:.【小问2详解】由(1)知,,当时,,则当,即时,,当,即时,,所以函数在上的值域是.18、(1)最小正周期为,(2)3,【解析】(1)直接利用周期公式可求出周期,由可求出增区间,(2)由得,从而可求出最小值,则可求出的值,进而可求出函数解析式,则可求出最大值以及取得最大值时x的取值集合【小问1详解】的最小正周期为.令,,解得,.所以的单调递增区间为.【小问2详解】当时,.,解得.所以.当,,即,时,取得最大值,且最大值为3.故的最大值为3,取得最大值时x的取值集合为19、解:(1)y(2)ymax=1225,ymin=600【解析】解:(Ⅰ)=(Ⅱ)当0≤t<10时,y的取值范围是[1200,1225],在t=5时,y取得最大值为1225;当10≤t≤20时,y的取值范围是[600,1200],在t=20时,y取得最小值为600(答)总之,第5天,日销售额y取得最大为1225元;第20天,日销售额y取得最小为600元20、(1)证明见解析;(2)30°;(3)存在,.【解析】(1)首先根据已知条件并结合线面垂直的判定定理证明平面,再证明即可求解;(2)根据(1)中结论找出所求角,再结合已知条件即可求解;(3)首先假设存在,然后根据线面平行的性质以及已知条件,看是否能求出点的具体位置,即可求解.【详解】(1)因为,是的中点,所以,故四边形是菱形,从而,所以沿着翻折成后,,又因为,所以平面,由题意,易知,,所以四边形是平行四边形,故,所以平面;(2)因为平面,所以与平面所成的角为,由已知条件,可知,,所以是正三角形,所以,所以与平面所成的角为30°;(3)假设线段上是存在点,使得平面,过点作交于,连结,,如下图:所以,所以,,,四点共面,又因平面,所以,所以四边形为平行四边形,故,所以为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论