版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届内蒙古包钢一中数学高一上期末学业水平测试模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知与分别是函数与的零点,则的值为A. B.C.4 D.52.不等式成立x的取值集合为()A. B.C. D.3.已知集合,集合,则()A. B.C. D.4.已知是第四象限角,是角终边上的一个点,若,则()A.4 B.-4C. D.不确定5.已知,则等于()A.1 B.2C.3 D.66.已知集合,集合为整数集,则A. B.C. D.7.已知集合A={1,2,3},集合B={x|x2=x},则A∪B=()A.{1} B.{1,2}C.{0,1,2,3} D.{-1,0,1,2,3}8.已知函数,则()A. B.3C. D.9.已知偶函数在上单调递增,且,则的解集是()A. B.或C.或 D.或10.已知向量,且,则实数=A B.0C.3 D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知是偶函数,则实数a的值为___________.12.下列说法中,所有正确说法的序号是_____终边落在轴上的角的集合是;
函数图象与轴的一个交点是;函数在第一象限是增函数;若,则13.已知函数,若函数有3个零点,则实数a的取值范围是_______.14.若函数(其中)在区间上不单调,则的取值范围为__________.15.已知函数,,若对任意,存在,使得,则实数的取值范围是__________16.,,且,则的最小值为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,其中,且.(1)求的值及的最小正周期;(2)当时,求函数的值域.18.已知向量,.(1)求的值;(2)若向量满足,,求向量的坐标.19.已知函数过定点,函数的定义域为.(Ⅰ)求定点并证明函数的奇偶性;(Ⅱ)判断并证明函数在上的单调性;(Ⅲ)解不等式.20.已知函数(1)求证:用单调性定义证明函数是上的严格减函数;(2)已知“函数的图像关于点对称”的充要条件是“对于定义域内任何恒成立”.试用此结论判断函数的图像是否存在对称中心,若存在,求出该对称中心的坐标;若不存在,说明理由;(3)若对任意,都存在及实数,使得,求实数的最大值.21.已知函数的部分图象如图所示.(1)求的解析式;(2)将图象上所有点的横坐标变为原来的倍(纵坐标不变),得到的图象.又求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】设,,由,互为反函数,其图象关于直线对称,作直线,分别交,的图象为A,B两点,点为A,B的中点,联立方程得,由中点坐标公式得:,又,故得解【详解】解:由,化简得,设,,由,互为反函数,其图象关于直线对称,作直线,分别交,的图象为A,B两点,点为A,B的中点,联立得;,由中点坐标公式得:,所以,故选D【点睛】本题考查了反函数、中点坐标公式及函数的零点等知识,属于难题.2、B【解析】先求出时,不等式的解集,然后根据周期性即可得答案.【详解】解:不等式,当时,由可得,又最小正周期为,所以不等式成立的x的取值集合为.故选:B.3、C【解析】解不等式求出集合A中的x的范围,然后求出A的补集,再与集合B求交集即可.【详解】集合,则集合,,故选:C.【点睛】本题考查了集合的基本运算,属于基础题.4、B【解析】利用三角函数的定义求得.【详解】依题意是第四象限角,所以,.故选:B5、A【解析】利用对数和指数互化,可得,,再利用即可求解.【详解】由得:,,所以,故选:A6、A【解析】,选A.【考点定位】集合的基本运算.7、C【解析】求出集合B={0,1},然后根据并集的定义求出A∪B【详解】解:∵集合A={1,2,3},集合B={x|x2=x}={0,1},∴A∪B={0,1,2,3}故选C【点睛】本题考查并集的求法,是基础题,解题时要认真审题8、D【解析】根据分段函数的解析式,令代入先求出,进而可求出的结果.【详解】解:,则令,得,所以.故选:D.9、B【解析】由已知和偶函数的性质将不等式转化为,再由其单调性可得,解不等式可得答案【详解】因为,则,所以,因为为偶函数,所以,因为在上单调递增,所以,解得或,所以不等式的解集为或,故选:B10、C【解析】由题意得,,因为,所以,解得,故选C.考点:向量的坐标运算.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据偶函数定义求解【详解】由题意恒成立,即,恒成立,所以故答案为:12、【解析】取值验证可判断;直接验证可判断;根据第一象限的概念可判断;由诱导公式化简可判断.【详解】中,取时,的终边在x轴上,故错误;中,当时,,故正确;中,第一象限角的集合为,显然在该范围内函数不单调;中,因为,所以,所以,故正确.故答案为:②④13、(0,1]【解析】先作出函数f(x)图象,根据函数有3个零点,得到函数f(x)的图象与直线y=a有三个交点,结合图象即可得出结果【详解】由题意,作出函数的图象如下:因为函数有3个零点,所以关于x的方程f(x)﹣a=0有三个不等实根;即函数f(x)的图象与直线y=a有三个交点,由图象可得:0<a≤1故答案为:(0,1]【点睛】本题主要考查函数的零点,灵活运用数形结合的思想是求解的关键14、【解析】化简f(x),结合正弦函数单调性即可求ω取值范围.【详解】,x∈,①ω>0时,ωx∈,f(x)在不单调,则,则;②ω<0时,ωx∈,f(x)在不单调,则,则;综上,ω的取值范围是.故答案为:.15、【解析】若任意,存在,使得成立,只需,∵,在该区间单调递增,即,又∵,在该区间单调递减,即,则,,16、3【解析】根据基本不等式“1”的用法求解即可.【详解】解:解法一:因为所以当且仅当时等号成立.解法二:设,,则,所以当且仅当时等号成立.故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),(2)【解析】(1)利用两角和正弦公式和辅助角公式化简,结合条件可求函数解析式,由周期公式求周期;(2)利用不等式的性质和正弦函数的性质求函数的值域.【小问1详解】因为,故,解得因为,故.则的最小正周期为.【小问2详解】因为,所以,则,所以,故函数的值域为.18、(1)7;(2).【解析】(1)先计算,再求模即可;(2)设,进而计算,,再根据垂直与共线的坐标关系求解即可.【详解】解:(1)因为向量,,所以,所以(2)设,,因为,,所以,解得所以19、(Ⅰ)定点为,奇函数,证明见解析;(Ⅱ)在上单调递增,证明见解析;(Ⅲ).【解析】(Ⅰ)根据解析式可求得定点为,即可得解析式,根据奇函数的定义,即可得证;(Ⅱ)利用定义法即可证明的单调性;(Ⅲ)根据的单调性和奇偶性,化简整理,可得,根据函数的定义域,列出不等式组,即可求得答案.【详解】(Ⅰ)函数过定点,定点为,,定义域为,.函数为奇函数.(Ⅱ)上单调递增.证明:任取,且,则.,,,,,即,函数在区间上是增函数.(Ⅲ),即,函数为奇函数在上为单调递增函数,,,解得:.故不等式的解集为:【点睛】解题的关键是熟练掌握函数奇偶性、单调性的定义,并灵活应用,在处理单调性、奇偶性综合问题时,需要注意函数所有的自变量都要在定义域内,方可求得正确答案.20、(1)见解析;(2)存在,为;(3)2.【解析】(1)先设,然后利用作差法比较与的大小即可判断;假设函数的图像存在对称中心,(2)结合函数的对称性及恒成立问题可建立关于,的方程,进而可求,;(3)由已知代入整理可得,的关系,然后结合恒成立可求的范围,进而可求【小问1详解】设,则,∴,∴函数是上的严格减函数;【小问2详解】假设函数的图像存在对称中心,则恒成立,整理得恒成立,∴,解得,,故函数的对称中心为;【小问3详解】∵对任意,,都存在,及实数,使得,∴,即,∴,∴,∵,,∴,,∵,,∴,,,∴,即,∴,∴,即的最大值为221、(1);(2).【解析】(1)由顶点及周期可得,,再由,可得,从而得解;(2)根据条件得,再结合诱导公式和同角三角函数关系可得解.【详解】(1)由图可知,由,得,所以,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 公共安全视频监控管理指南(标准版)
- 互联网金融服务管理办法
- 档案资料管理规范制度
- 房地产租赁合同签订与管理规范(标准版)
- 2025年企业财务管理与核算规范
- 超市消防安全教育制度
- 采购信息网络安全与保密制度
- 办公室员工绩效评估制度
- 上师大附中嘉定新城分校2026学年教师招聘与实习生招募备考题库(第二批次)及完整答案详解一套
- 养老院安全防护制度
- 国开2023年企业法务形考任务1-4答案
- 感应加热器安全操作规程
- 商业地产行业商业地产投资机会
- 两轮车控制器行业报告
- JSA临时用电作业安全分析表
- 红外和拉曼光谱
- 2015-2022年北京卫生职业学院高职单招语文/数学/英语笔试参考题库含答案解析
- 赛肤润常见临床应用2010年
- 提高铝模板施工质量合格率
- 传感器与检测技术习题集
- MT/T 106-1996顺槽用刮板转载机通用技术条件
评论
0/150
提交评论