版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第1页(共1页)2025年山东省威海市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个是正确的.每小题选对得3分,选错、不选或多选,均不得分)1.(3分)(2025•威海)如表记录了某日我国四个城市的平均气温:城市北京哈尔滨威海香港气温(℃)﹣2.6﹣19.84.218.7其中,平均气温最低的城市是()A.北京 B.哈尔滨 C.威海 D.香港2.(3分)(2025•威海)如图是用5个大小相同的小立方块搭成的几何体.其左视图是()A. B. C. D.3.(3分)(2025•威海)下列运算正确的是()A.b3+b2=b5 B.(﹣2b2)3=﹣6a6 C.b÷ab⋅ba=b D.(﹣b)4.(3分)(2025•威海)据央视网2025年4月19日消息,复旦大学集成芯片与系统全国重点实验室、片与系统前沿技术研究院科研团队成功研制出半导体电荷存储器“破晓”.“破晓”存储器擦写速度提升至400皮秒实现一次擦或者写.一皮秒仅相当于一万亿分之一秒.400皮秒用科学记数法表示为()A.4×10﹣10秒 B.4×10﹣11秒 C.4×10﹣12秒 D.40×10﹣12秒5.(3分)(2025•威海)如图,直线CF∥DE,∠ACB=90°,∠A=30°.若∠1=18°,则∠2等于()A.42° B.38° C.36° D.30°6.(3分)(2025•威海)如图,△ABC的中线BE,CD交于点F,连接DE.下列结论错误的是()A.S△DEF=14S△B.S△ADE=12S四边形C.S△DBF=12S△D.S△ADC=S△AEB7.(3分)(2025•威海)已知点(﹣2,y1),(3,y2),(7,y3)都在二次函数y=﹣(x﹣2)2+c的图象上,则y1,y2,y3的大小关系是()A.y1>y2>y3 B.y1>y3>y2 C.y2>y1>y3 D.y3>y2>y18.(3分)(2025•威海)我们把两组邻边分别相等的四边形称之为“筝形”.在四边形ABCD中,对角线AC,BD交于点O.下列条件中,不能判断四边形ABCD是筝形的是()A.BO=DO,AC⊥BD B.∠DAC=∠BAC,AD=AB C.∠DAC=∠BAC,∠DCA=∠BCA D.∠ADC=∠ABC,BO=DO9.(3分)(2025•威海)某广场计划用如图①所示的A,B两种瓷砖铺成如图②所示的图案.第一行第一列瓷砖的位置记为(1,1),其右边瓷砖的位置记为(2,1),其上面瓷砖的位置记为(1,2),按照这样的规律,下列说法正确的是()A.(2024,2025)位置是B种瓷砖 B.(2025,2025)位置是B种瓷砖 C.(2026,2026)位置是A种瓷砖 D.(2025,2026)位置是B种瓷砖10.(3分)(2025•威海)2025年5月,基于“三进制”逻辑的芯片研制成功.与传统的“二进制”芯片相比,三进制逻辑芯片在特定的运算中具有更高的效率.二进制数的组成数字为0,1.十进制数22化为二进制数:22=1×24+0×23+1×22+1×21+0×20=101102.传统三进制数的组成数字为0,1,2.十进制数22化为三进制数:22=2×32+1×31+1×30=2113.将二进制数10112化为三进制数为()A.1023 B.1013 C.1103 D.123二、填空题(本大题共6小题,每小题3分,共18分.只要求填出最后结果)11.(3分)(2025•威海)计算:(1212.(3分)(2025•威海)若2x﹣3y=2,则6y﹣4x+1=.13.(3分)(2025•威海)一个不透明的袋子中装有2个绿球、1个白球,每个球除颜色外都相同.小明同学从袋中随机摸出1个球(不放回)后,小华同学再从袋中随机摸出1个球.两人摸到不同颜色球的概率是.14.(3分)(2025•威海)如图,小明同学将正方形硬纸板沿实线剪开,得到一个立方体的表面展开图.若正方形硬纸板的边长为12cm,则折成立方体的棱长为cm.15.(3分)(2025•威海)如图,点A在反比例函数y=4x的图象上,点B在反比例函数y=−2x的图象上,连接OA,OB,AB.若AO⊥BO,则tan∠16.(3分)(2025•威海)把一张矩形纸片按照如图①所示的方式剪成四个全等的直角三角形,四个直角三角形可拼成如图②或图③所示的正方形.若矩形纸片的长为m,宽为n,四边形EFGH的面积等于四边形ABCD面积的2倍,则mn=三、解答题(本大题共8小题,共72分)17.(8分)(2025•威海)(1)解不等式组2x−7<3(x−1)1(2)解分式方程x−22x−1−118.(8分)(2025•威海)为深入实施科教兴国战略,加快提升广大青少年科技素养,某区市开展了科技素养测评活动,内容包括知识测试和实践创新两部分.所有参赛学生的总成绩均不低于70分;总成绩x(单位:分)分为三个等级:优秀(90≤x<100),良好(80≤x<90),一般(70≤x<80);总成绩80分及以上人数占总人数的百分比是优良率.阳光中学为了解本校参赛学生科技素养测评情况,整理了这次活动本校及所在区市参赛学生测评总成绩的相关数据,部分信息如下:测评总成绩统计表平均数中位数优秀率优良率阳光中学84.68830%a区市85.38735%75%请根据所给信息,解答下列问题:(1)求阳光中学参赛人数及a的值,并补全统计图;(2)请你对比区市测评总成绩,选择两个角度,对阳光中学参赛学生科技素养测评情况做出评价;(3)每位参赛学生的总成绩是由知识测试和实践创新成绩按一定的百分比折合而成.小红同学知识测试成绩为80分,实践创新成绩为90分,她的总成绩为87分,求知识测试成绩和实践创新成绩各占的百分比.19.(8分)(2025•威海)如图,某校有一块长20m、宽14m的矩形种植园.为了方便耕作管理,在种植园的四周和内部修建宽度相同的小路(图中阴影部分).小路把种植园分成面积均为24m2的9个矩形地块,请你求出小路的宽度.20.(8分)(2025•威海)小明同学计划测量小河对面一幢大楼的高度AB.测量方案如图所示:先从自家的阳台点C处测得大楼顶部点B的仰角∠1的度数,大楼底部点A的俯角∠2的度数.然后在点C正下方点D处,测得大楼顶部点B的仰角∠3的度数.若∠1=45°,∠2=52°,∠3=65°,CD=10m,求大楼的高度AB.(精确到1m).参考数据:sin52°≈0.8,cos52°≈0.6,tan52°≈1.3;sin65°≈0.9,cos65°≈0.4,tan65°≈2.1.21.(8分)(2025•威海)如图,PA是⊙O的切线,点A为切点.点B为⊙O上一点,射线PB,AO交于点C,连接AB,点D在AB上,过点D作DF⊥AB,交AP于点F,作DE⊥BP,垂足为点E.AD=BE,BD=AF.(1)求证:PB是⊙O的切线;(2)若AP=4,sin∠C=23,求⊙22.(10分)(2025•威海)问题提出已知∠α,∠β都是锐角,tanα=12,tanβ=13,求∠问题解决(1)如图,小亮同学在边长为1的正方形网格中画出∠BAD和∠CAD,请你按照这个思路求∠α+∠β的度数.(点A,B,C,D都在格点上)策略迁移(2)已知∠α,∠β都是锐角,tanα=23,tanβ=32,则∠α+∠(3)已知∠α,∠β,∠θ都是锐角,tanα=13,tanβ=17,∠α+∠β=∠(提示:在正方形网格中画出求解过程的图形,并直接写出答案)23.(10分)(2025•威海)(1)如图①,将平行四边形纸片ABCD的四个角向内折叠,恰好拼成一个无缝隙、无重叠的四边形EFGH.判断四边形EFGH的形状,并说明理由;(2)如图②,已知▱ABCD能按照图①的方式对折成一个无缝隙、无重叠的四边形MNPQ,其中,点M在AD上,点N在AB上,点P在BC上,点Q在CD上.请用直尺和圆规确定点M的位置.(不写作法,保留作图痕迹)24.(12分)(2025•威海)已知抛物线y=ax2+bx﹣3交x轴于点A(﹣1,0),点B,交y轴于点C.点C向右平移2个单位长度,得到点D,点D在抛物线y=ax2+bx﹣3上.点E为抛物线的顶点.(1)求抛物线的表达式及顶点E的坐标;(2)连接BC,点M是线段BC上一动点,连接OM,作射线CD.①在射线CD上取一点F,使CF=CO,连接FM.当OM+FM的值最小时,求点M的坐标;②点N是射线CD上一动点,且满足CN=CM.作射线CE,在射线CE上取一点G,使CG=CO.连接GN,BN.求OM+BN的最小值;(3)点P在抛物线y=ax2+bx﹣3的对称轴上,若∠OAP+∠OCA=45°,则点P的坐标为.
2025年山东省威海市中考数学试卷参考答案与试题解析一.选择题(共10小题)题号12345678910答案BCDAABCDBA一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个是正确的.每小题选对得3分,选错、不选或多选,均不得分)1.(3分)(2025•威海)如表记录了某日我国四个城市的平均气温:城市北京哈尔滨威海香港气温(℃)﹣2.6﹣19.84.218.7其中,平均气温最低的城市是()A.北京 B.哈尔滨 C.威海 D.香港【考点】正数和负数.【分析】根据正数和负数的实际意义比较各数的大小即可.【解答】解:∵﹣19.8<﹣2.6<4.2<18.7,∴平均气温最低的城市是哈尔滨,故选:B.【点评】本题考查正数和负数,理解其实际意义是解题的关键.2.(3分)(2025•威海)如图是用5个大小相同的小立方块搭成的几何体.其左视图是()A. B. C. D.【考点】简单组合体的三视图.【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.【解答】解:从左边看,可得选项C的图形.故选:C.【点评】本题考查了简单组合体的三视图,左视图是从物体的左面看得到的视图.3.(3分)(2025•威海)下列运算正确的是()A.b3+b2=b5 B.(﹣2b2)3=﹣6a6 C.b÷ab⋅ba=b D.(﹣b)【考点】分式的乘除法;合并同类项;幂的乘方与积的乘方;同底数幂的除法.【分析】利用分式的乘除法,合并同类项,积的乘方,同底数幂除法法则逐项判断即可.【解答】解:b3与b2不是同类项,无法合并,则A不符合题意,(﹣2b2)3=﹣8b6,则B不符合题意,b÷ab⋅ba=b•(﹣b)3÷(﹣b2)=b,则D符合题意,故选:D.【点评】本题考查分式的乘除法,合并同类项,积的乘方,同底数幂除法,熟练掌握相关运算法则是解题的关键.4.(3分)(2025•威海)据央视网2025年4月19日消息,复旦大学集成芯片与系统全国重点实验室、片与系统前沿技术研究院科研团队成功研制出半导体电荷存储器“破晓”.“破晓”存储器擦写速度提升至400皮秒实现一次擦或者写.一皮秒仅相当于一万亿分之一秒.400皮秒用科学记数法表示为()A.4×10﹣10秒 B.4×10﹣11秒 C.4×10﹣12秒 D.40×10﹣12秒【考点】科学记数法—表示较小的数.【分析】根据题意列式计算后再将结果利用科学记数法表示出来即可.【解答】解:400×11000000000000=400×10﹣12故选:A.【点评】本题考查科学记数法表示较小的数,理解题意并列得正确的算式是解题的关键.5.(3分)(2025•威海)如图,直线CF∥DE,∠ACB=90°,∠A=30°.若∠1=18°,则∠2等于()A.42° B.38° C.36° D.30°【考点】平行线的性质.【分析】由直角三角板的性质可知∠ACF=90°+∠1=108°,再根据平行线的性质得∠ADE=∠ACF=108°,由三角形内角和定理即可得出结论.【解答】解:∵∠1=18°,∴∠ACF=90°+∠1=108°,∵CF∥DE,∴∠ADE=∠ACF=108°,∵∠ADE+∠2+∠A=180°,∠A=30°.∴∠2=180°﹣30°﹣108°=42°.故选:A.【点评】本题考查平行线的性质,三三角形内角和定理,关键是平行线性质定理的应用.6.(3分)(2025•威海)如图,△ABC的中线BE,CD交于点F,连接DE.下列结论错误的是()A.S△DEF=14S△B.S△ADE=12S四边形C.S△DBF=12S△D.S△ADC=S△AEB【考点】三角形的重心;三角形中位线定理;相似三角形的判定与性质.【分析】根据重心的性质,结合相似三角形的判定与性质,对所给选项依次进行判断即可.【解答】解:由题知,因为BE,CD为△ABC的中线,所以点F为△ABC的重心,所以DE∥BC,DE=1所以△DEF∽△CBF,所以S△DEF所以S△DEF故A选项不符合题意.因为DE∥BC,所以△ADE∽△ABC,所以S△ADE所以S△ADE故B选项符合题意.因为点F为△ABC的重心,所以DF=1所以S△DBF故C选项不符合题意.因为DE∥BC,所以S△DBE=S△DCE,所以S△ADC=S△AEB.故D选项不符合题意.故选:B.【点评】本题主要考查了三角形的重心、相似三角形的判定与性质及三角形中位线定理,熟知三角形重心的性质及相似三角形的判定与性质是解题的关键.7.(3分)(2025•威海)已知点(﹣2,y1),(3,y2),(7,y3)都在二次函数y=﹣(x﹣2)2+c的图象上,则y1,y2,y3的大小关系是()A.y1>y2>y3 B.y1>y3>y2 C.y2>y1>y3 D.y3>y2>y1【考点】二次函数图象上点的坐标特征.【分析】先根据抛物线解析式确定二次函数的抛物线的开口方向和对称轴,然后再根据点与对称轴越近、对应的函数值越小解答即可.【解答】解:∵抛物线y=﹣(x﹣2)2+c,∴抛物线开口向下,对称轴为直线x=2,∵三点为(﹣2,y1),(3,y2),(7,y3),∴与对称轴的距离分别为|﹣2﹣2|=4,|3﹣2|=1,|7﹣2|=5,∴1<4<5,∴y2>y1>y3.故选:C.【点评】本题主要考查二次函数图象上点的坐标特征,解题的关键是掌握二次函数的图象与性质.8.(3分)(2025•威海)我们把两组邻边分别相等的四边形称之为“筝形”.在四边形ABCD中,对角线AC,BD交于点O.下列条件中,不能判断四边形ABCD是筝形的是()A.BO=DO,AC⊥BD B.∠DAC=∠BAC,AD=AB C.∠DAC=∠BAC,∠DCA=∠BCA D.∠ADC=∠ABC,BO=DO【考点】全等三角形的判定与性质.【分析】根据筝形的判定逐一进行判定即可.【解答】解:A.∵BO=DO,AC⊥BD,∴AC是BD的垂直平分线,∴AB=AD,CB=CD,∴四边形ABCD是筝形,∴A选项不符合题意;B.在△ACD与△ACB中,AD=AB∠DAC=∠BAC∴△ACD≌△ACB(SAS),∴CD=CB,∴四边形ABCD是筝形,∴B选项不符合题意;C.在△ACD与△ACB中,∠DAC=∠BACAC=AC∴△ACD≌△ACB(ASA),∴AD=AB,CD=CB,∴四边形ABCD是筝形,∴C选项不符合题意;D.由∠ADC=∠ABC,BO=DO,不能证明四边形ABCD是筝形,∴D选项符合题意;故选:D.【点评】本题考查垂直平分线的性质,全等三角形的性质与判定,理解筝形定义是解题的关键.9.(3分)(2025•威海)某广场计划用如图①所示的A,B两种瓷砖铺成如图②所示的图案.第一行第一列瓷砖的位置记为(1,1),其右边瓷砖的位置记为(2,1),其上面瓷砖的位置记为(1,2),按照这样的规律,下列说法正确的是()A.(2024,2025)位置是B种瓷砖 B.(2025,2025)位置是B种瓷砖 C.(2026,2026)位置是A种瓷砖 D.(2025,2026)位置是B种瓷砖【考点】规律型:点的坐标;坐标确定位置.【分析】通过图中A、B种瓷砖的位置,找出特征,即可求解.【解答】解:A种瓷砖:(1,2),(1,4),(1,6),…,(2,1),(2,3),(2,5),…,B种瓷砖:(1,1),(1,3),(1,5),…,(2,2),(2,4),(2,6),…,由此可得,A种瓷砖的坐标规律为(单数,双数),(双数,单数),B种瓷砖的坐标规律为(单数,单数),(双数,双数),(2024,2025)位置是A种瓷砖,故A不符合题意;(2025,2025)位置是B种瓷砖,故B符合题意;(2026,2026)位置是B种瓷砖,故C不符合题意;(2025,2026)位置是A种瓷砖,故D不符合题意;故选:B.【点评】本题主要考查了规律型﹣点的坐标,正确找出规律是解题的关键.10.(3分)(2025•威海)2025年5月,基于“三进制”逻辑的芯片研制成功.与传统的“二进制”芯片相比,三进制逻辑芯片在特定的运算中具有更高的效率.二进制数的组成数字为0,1.十进制数22化为二进制数:22=1×24+0×23+1×22+1×21+0×20=101102.传统三进制数的组成数字为0,1,2.十进制数22化为三进制数:22=2×32+1×31+1×30=2113.将二进制数10112化为三进制数为()A.1023 B.1013 C.1103 D.123【考点】有理数的混合运算.【分析】先将二进制数10112化为十进制数,再将其化为三进制数即可.【解答】解:将二进制数10112化为十进制数为1×23+0×22+1×21+1×20=11,∵11=1×32+0×31+2×30,∴将二进制数10112化为三进制数为1023,故选:A.【点评】本题考查有理数的混合运算,理解题意并列得正确的算式是解题的关键.二、填空题(本大题共6小题,每小题3分,共18分.只要求填出最后结果)11.(3分)(2025•威海)计算:(12)−1【考点】实数的运算;零指数幂;负整数指数幂.【分析】利用负整数指数幂,零指数幂,二次根式的性质计算后再算加减即可.【解答】解:原式=2﹣22−1=1﹣22故答案为:1﹣22.【点评】本题考查实数的运算,负整数指数幂,零指数幂,熟练掌握相关运算法则是解题的关键.12.(3分)(2025•威海)若2x﹣3y=2,则6y﹣4x+1=﹣3.【考点】代数式求值.【分析】根据已知条件将要求代数式变形,然后整体代入求值即可.【解答】解:∵6y﹣4x+1=﹣4x+6y+1,∴当2x﹣3y=2时,原式=﹣4x+6y+1=﹣2(2x﹣3y)+1=﹣2×2+1=﹣3.故答案为:﹣3.【点评】本题考查代数式求值,按照代数式规定的运算,计算的结果就是代数式的值.13.(3分)(2025•威海)一个不透明的袋子中装有2个绿球、1个白球,每个球除颜色外都相同.小明同学从袋中随机摸出1个球(不放回)后,小华同学再从袋中随机摸出1个球.两人摸到不同颜色球的概率是23【考点】列表法与树状图法.【分析】列表可得出所有等可能的结果数以及两人摸到不同颜色球的结果数,再利用概率公式可得出答案.【解答】解:列表如下:绿绿白绿(绿,绿)(绿,白)绿(绿,绿)(绿,白)白(白,绿)(白,绿)共有6种等可能的结果,其中两人摸到不同颜色球的结果有4种,∴两人摸到不同颜色球的概率为46故答案为:23【点评】本题考查列表法与树状图法,熟练掌握列表法与树状图法是解答本题的关键.14.(3分)(2025•威海)如图,小明同学将正方形硬纸板沿实线剪开,得到一个立方体的表面展开图.若正方形硬纸板的边长为12cm,则折成立方体的棱长为1225【考点】展开图折叠成几何体;勾股定理.【分析】根据勾股定理列方程求解即可.【解答】解:如图,设BC=xcm,则AB=(12﹣x)cm,BD=2xcm,BE=42xcm在Rt△ABE中,由勾股定理得,AE2+AB2=BE2,即(12﹣x)2+(12﹣x)2=(42x)2,解得x=125或所以正方体的棱长为1225故答案为:122【点评】本题考查展开图折叠成几何体以及勾股定理,掌握勾股定理是正确解答的关键.15.(3分)(2025•威海)如图,点A在反比例函数y=4x的图象上,点B在反比例函数y=−2x的图象上,连接OA,OB,AB.若AO⊥BO,则tan∠BAO=【考点】反比例函数图象上点的坐标特征;解直角三角形.【分析】如图,作BG⊥y轴,垂足为G,作AH⊥y轴,垂足为H可得△OAH∽△BOG利用相似三角形的性质及反比例函数k值几何意义即可得到结果.【解答】解:如图,作BG⊥y轴,垂足为G,作AH⊥y轴,垂足为H,∵点A在反比例函数y=4x的图象上,点B在反比例函数y∴S△BOG=1,S△AOH=2,∵∠AOB=90°,∴∠OAH=∠BOG,∴△OAH∽△BOG,∴OB∴tan∠BAO=OB故答案为:22【点评】本题考查了反比例函数图象上点的坐标特征,熟练掌握该知识点是关键.16.(3分)(2025•威海)把一张矩形纸片按照如图①所示的方式剪成四个全等的直角三角形,四个直角三角形可拼成如图②或图③所示的正方形.若矩形纸片的长为m,宽为n,四边形EFGH的面积等于四边形ABCD面积的2倍,则mn=2+【考点】图形的剪拼;全等图形;全等三角形的性质;矩形的性质.【分析】根据四边形EFGH的面积等于四边形ABCD面积的2倍,构建方程求解.【解答】解:由题意(m2+n24)=2•(m−1整理得4m2﹣8mn+n2=0,∴m=2±3∵m>12∴mn∴mn故答案为:2+3【点评】本题考查图形的拼剪,全等图形,矩形的性质,正方形的性质,全等三角形的性质,解题的关键是学会利用参数构建方程解决问题.三、解答题(本大题共8小题,共72分)17.(8分)(2025•威海)(1)解不等式组2x−7<3(x−1)1(2)解分式方程x−22x−1−1【考点】解分式方程;在数轴上表示不等式的解集.【分析】(1)先分别求出两个不等式的解集,再求出不等式组的解集,最后把解集表示在数轴上即可;(2)利用去分母将原方程化为整式方程,解得x的值后进行检验即可.【解答】解:(1)2x−7<3(x−1)①1解不等式①得:x>﹣4,解不等式②得:x≤3,∴不等式组的解集为﹣4<x≤3,把解集表示在数轴上,如图所示:(2)原方程去分母得:x﹣2﹣2x+1=﹣1,解得:x=0,检验:当x=0时,2x﹣1≠0,故原方程的解为x=0.【点评】本题考查了解一元一次不等式组,在数轴上表示不等式的解集和解分式方程,熟练掌握这些解法是解题的关键.18.(8分)(2025•威海)为深入实施科教兴国战略,加快提升广大青少年科技素养,某区市开展了科技素养测评活动,内容包括知识测试和实践创新两部分.所有参赛学生的总成绩均不低于70分;总成绩x(单位:分)分为三个等级:优秀(90≤x<100),良好(80≤x<90),一般(70≤x<80);总成绩80分及以上人数占总人数的百分比是优良率.阳光中学为了解本校参赛学生科技素养测评情况,整理了这次活动本校及所在区市参赛学生测评总成绩的相关数据,部分信息如下:测评总成绩统计表平均数中位数优秀率优良率阳光中学84.68830%a区市85.38735%75%请根据所给信息,解答下列问题:(1)求阳光中学参赛人数及a的值,并补全统计图;(2)请你对比区市测评总成绩,选择两个角度,对阳光中学参赛学生科技素养测评情况做出评价;(3)每位参赛学生的总成绩是由知识测试和实践创新成绩按一定的百分比折合而成.小红同学知识测试成绩为80分,实践创新成绩为90分,她的总成绩为87分,求知识测试成绩和实践创新成绩各占的百分比.【考点】中位数;条形统计图.【分析】(1)由优秀率及优秀人数可求得参赛学生总人数,用优良人数除以总人数可得a的值,再求出良好等级人数即可补全统计图;(2)根据平均数、中位数、优秀率或优良率的意义求解(答案不唯一,合理即可);(3)设知识测试成绩所占百分比为x,则实践创新成绩所占百分比为1﹣x,根据加权平均数的定义列出关于x的方程,解之即可得出答案.【解答】解:(1)阳光中学参赛人数为30÷30%=100(人),优良率a=100−20良好人数为100﹣20﹣30=50(人),补全图形如下:(2)从平均数看,市区参赛学生成绩的平均数大于阳光中学,所以市区参赛学生的平均水平高;从中位数看,阳光中学参赛学生成绩的中位数大于市区,所以阳光中学参赛学生的高分人数略多于市区;(3)设知识测试成绩所占百分比为x,则实践创新成绩所占百分比为1﹣x,则80x+90(1﹣x)=87,解得x=0.3=30%,所以知识测试成绩所占百分比为30%,实践创新成绩所占百分比为70%.【点评】本题考查条形统计图、统计表、加权平均数,解题的关键是明确题意,找出所求问题需要的条件.19.(8分)(2025•威海)如图,某校有一块长20m、宽14m的矩形种植园.为了方便耕作管理,在种植园的四周和内部修建宽度相同的小路(图中阴影部分).小路把种植园分成面积均为24m2的9个矩形地块,请你求出小路的宽度.【考点】一元二次方程的应用.【分析】设小路的宽度为xm,则9块矩形地块可合成长为(20﹣4x)m,宽为(14﹣4x)m的矩形,根据小路把种植园分成面积均为24m2的9个矩形地块,可列出关于x的一元二次方程,解之取其符合题意的值,即可得出结论.【解答】解:设小路的宽度为xm,则9块矩形地块可合成长为(20﹣4x)m,宽为(14﹣4x)m的矩形,根据题意得:(20﹣4x)(14﹣4x)=24×9,整理得:2x2﹣17x+8=0,解得:x1=12,x答:小路的宽度为12m【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.20.(8分)(2025•威海)小明同学计划测量小河对面一幢大楼的高度AB.测量方案如图所示:先从自家的阳台点C处测得大楼顶部点B的仰角∠1的度数,大楼底部点A的俯角∠2的度数.然后在点C正下方点D处,测得大楼顶部点B的仰角∠3的度数.若∠1=45°,∠2=52°,∠3=65°,CD=10m,求大楼的高度AB.(精确到1m).参考数据:sin52°≈0.8,cos52°≈0.6,tan52°≈1.3;sin65°≈0.9,cos65°≈0.4,tan65°≈2.1.【考点】解直角三角形的应用﹣仰角俯角问题.【分析】过C作CG⊥AB于G,过D作DH⊥AB于H,则四边形CDHG是矩形,根据矩形的性质得到GH=CD=10m,CG=DH,根据等腰直角三角形的性质得到CG=AG,设CG=AG=DH=xm,解直角三角形即可得到结论.【解答】解:过C作CG⊥AB于G,过D作DH⊥AB于H,则四边形CDHG是矩形,∴GH=CD=10m,CG=DH,∵∠1=45°,∴CG=BG,设AH=xm,∴AG=(x+10),在Rt△ACG中,∵∠2=52°,∴CG=AGtan52°∴BG=CG=10+x1.3∴BH=AB﹣AH=(10+x1.3+10)在Rt△BDH中,∠3=65°,∴tan65°=BH∴x≈1.8,AH≈1.8,BH≈19.1,∴AB=BH+AH≈29(m).答:大楼的高度AB约为29m.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题,正确地添加辅助线是解题的关键.21.(8分)(2025•威海)如图,PA是⊙O的切线,点A为切点.点B为⊙O上一点,射线PB,AO交于点C,连接AB,点D在AB上,过点D作DF⊥AB,交AP于点F,作DE⊥BP,垂足为点E.AD=BE,BD=AF.(1)求证:PB是⊙O的切线;(2)若AP=4,sin∠C=23,求⊙【考点】圆的综合题.【分析】(1)连接OB,根据垂直的定义得到∠ADF=∠DEB=90°,根据全等三角形的性质得到∠DBE=∠FAD,根据切线的性质得到∠CAP=90°,得到∠OBE=90°,根据切线的判定定理得到结论;(2)根据三角函数的定义得到PC=6,根据勾股定理得到AC=PC2【解答】(1)证明:连接OB,∵DF⊥AB,作DE⊥BP,∴∠ADF=∠DEB=90°,在Rt△BDE与Rt△AFD中,AD=BEBD=AF∴Rt△BDE≌Rt△AFD(HL),∴∠DBE=∠FAD,∵PA是⊙O的切线,点A为切点,∴∠CAP=90°,∴∠CAB+∠PAB=90°,∵OA=OB,∴∠OAB=∠OBA,∴∠OBA+∠ABE=90°,∴∠OBE=90°,∵OB是⊙O的半径,∴PB是⊙O的切线;(2)解:∵∠CAP=90°,AP=4,sin∠C=AP∴PC=6,∴AC=PC2∵∠CBO=∠CAP=90°,∠C=∠C,∴△CBO∽△CAP,∴OBAP∴OB4∴OB=4即⊙O的半径为45【点评】本题是圆的综合题,考查了切线的判定和性质,相似三角形的判定和性质,全等三角形的判定和性质,勾股定理,解直角三角形,正确地添加辅助线是解题的关键.22.(10分)(2025•威海)问题提出已知∠α,∠β都是锐角,tanα=12,tanβ=13,求∠问题解决(1)如图,小亮同学在边长为1的正方形网格中画出∠BAD和∠CAD,请你按照这个思路求∠α+∠β的度数.(点A,B,C,D都在格点上)策略迁移(2)已知∠α,∠β都是锐角,tanα=23,tanβ=32,则∠α+∠(3)已知∠α,∠β,∠θ都是锐角,tanα=13,tanβ=17,∠α+∠β=∠(提示:在正方形网格中画出求解过程的图形,并直接写出答案)【考点】作图—应用与设计作图;解直角三角形.【分析】(1)连接BC,利用等腰直角三角形的性质求解;(2)构造等腰直角三角形ABC可得结论,构造直角三角形DGF可得结论.【解答】解:(1)如图1中,连接BC,∵AB=BC=5,AC=∴AB2+BC2=AC2,∴∠ABC=90°,∴∠BAC=45°,∴∠α+∠β=45°;(2)如图2中,连接BC,由题意,α=∠BAD,β=∠DAC,∵△ABC是等腰直角三角形,∴α+β=90°.故答案为:90;(3)如图2中,α=∠GDH,β=∠HDF,在Rt△DGF中,tan(α+β)=FG【点评】本题考查作图﹣应用与设计作图,解直角三角形,解题的关键是学会路数形结合的思想解决问题.23.(10分)(2025•威海)(1)如图①,将平行四边形纸片ABCD的四个角向内折叠,恰好拼成一个无缝隙、无重叠的四边形EFGH.判断四边形EFGH的形状,并说明理由;(2)如图②,已知▱ABCD能按照图①的方式对折成一个无缝隙、无重叠的四边形MNPQ,其中,点M在AD上,点N在AB上,点P在BC上,点Q在CD上.请用直尺和圆规确定点M的位置.(不写作法,保留作图痕迹)【考点】作图—复杂作图;翻折变换(折叠问题);平行四边形的性质.【分析】(1)结论:四边形EFGH是矩形,根据四个角是直角的四边形是矩形证明即可;(2)分别以点D、C为圆心,大于12DC为半径作弧,连接两个交点,即为DC的垂直平分线,与DC交于点Q,同理作出AB的垂直平分线交于点N,连接NQ、AC,交于点Q,以点O为中心,OQ长为半径作弧交AD于点M,点M即为所作.连接MQ交于点P,连接MNPQ【解答】解:(1)结论:四边形EFGH是矩形.理由:通过折叠的性质可知∠AFE=∠EFK,∠BFG=∠KFG,∵∠AFB=180°,∴2∠EFK+2∠KFG=180°,∴∠EFK+∠KFG=90°,即∠EFG=90°,同法可证∠FGH=∠EHG=90°,∴四边形EFGH是矩形;(2)如图,分别以点D、C为圆心,大于12DC为半径作弧,连接两个交点,即为DC的垂直平分线,与DC交于点Q,同理作出AB的垂直平分线交于点N,连接NQ、AC,交于点Q,以点O为中心,OQ长为半径作弧交AD于点M,点M即为所作.连接
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年汽车维修(汽车发动机保养)试题及答案
- 2025年高职医疗器械维护与管理(器械维修)试题及答案
- 2025年高职护理(心理危机干预)试题及答案
- 2025年高职体育(体育教学方法)试题及答案
- 2025年高职环境工程(大气污染控制技术)试题及答案
- 2025年大学大一(影视基础)影视知识期中测试试题及答案
- 2026年平板销售(需求分析)试题及答案
- 2025年大学三年级(人类学)文化人类学试题及答案
- 2025年中职工业机器人基础(机器人基础理论)试题及答案
- 2026年酒店客房(客房应急管理)试题及答案
- 2025秋季学期国开电大法律事务专科《劳动与社会保障法》期末纸质考试总题库
- 维修基金管理办法新疆
- QGDW1168-2013输变电设备状态检修试验规程
- T-CNAS 04-2019 住院患者身体约束护理
- 2024年广东省公务员《申论(省市级)》试题真题及答案
- 民兵集训通知函
- 2025年鸡饲料采购合同
- 模拟电子技术基础 第4版黄丽亚课后参考答案
- 电信营业厅运营方案策划书(2篇)
- JBT 14850-2024 塔式起重机支护系统(正式版)
- 专精特新申报材料范本
评论
0/150
提交评论