2026届银川市重点中学数学高一上期末综合测试模拟试题含解析_第1页
2026届银川市重点中学数学高一上期末综合测试模拟试题含解析_第2页
2026届银川市重点中学数学高一上期末综合测试模拟试题含解析_第3页
2026届银川市重点中学数学高一上期末综合测试模拟试题含解析_第4页
2026届银川市重点中学数学高一上期末综合测试模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届银川市重点中学数学高一上期末综合测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数,若,则x的值是()A.3 B.9C.或1 D.或32.下列四组函数中,表示同一个函数的一组是()A.,B.,C.,D.,3.已知函数在上存在零点,则的取值范围为()A. B.C. D.4.已知函数是定义在上的偶函数,对任意,都有,当时,,则A. B.C.1 D.5.若,,,,则()A. B.C. D.6.已知函数是定义在R上的减函数,实数a,b,c满足,且,若是函数的一个零点,则下列结论中一定不正确的是()A. B.C. D.7.已知扇形的面积为,扇形圆心角的弧度是,则扇形的周长为()A. B.C. D.8.已知一个水平放置的平面四边形的直观图是边长为1的正方形,则原图形的周长为()A.6 B.8C. D.9.下列函数中既是奇函数,又是减函数的是()A. B.C D.10.函数的一个单调递增区间是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知满足任意都有成立,那么的取值范围是___________.12.函数在上是x的减函数,则实数a的取值范围是______13.已知角的终边经过点,则的值等于_____14.一个圆锥的侧面展开图是半径为3,圆心角为的扇形,则该圆锥的体积为________.15.若函数,则函数的值域为___________.16.在日常生活中,我们会看到如图所示的情境,两个人共提一个行李包.假设行李包所受重力为G,作用在行李包上的两个拉力分别为,,且,与的夹角为.给出以下结论:①越大越费力,越小越省力;②的范围为;③当时,;④当时,.其中正确结论的序号是______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设全集为,,,求:(1)(2)(3)18.如图,在三棱锥中,.(1)画出二面角的平面角,并求它的度数;(2)求三棱锥的体积.19.某城市地铁项目正在紧张建设中,通车后将给市民出行带来便利.已知某条线路通车后,地铁的发车时间间隔(单位:分钟)满足.经测算,地铁载客量与发车时间间隔相关,当时地铁为满载状态,载客量为人,当时,载客量会减少,减少的人数与的平方成正比,且发车时间间隔为分钟时的载客量为人,记地铁载客量为.(1)求的表达式,并求当发车时间间隔为分钟时,地铁的载客量;(2)若该线路每分钟的净收益为(元),问当发车时间间隔为多少时,该线路每分钟的净收益最大?每分钟的最大净收益为多少?20.求值:(1);(2).21.计算下列各式:(1);(2)

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】分段解方程即可.【详解】当时,,解得(舍去);当时,,解得或(舍去).故选:A2、B【解析】根据相等函数的判定方法,逐项判断,即可得出结果.【详解】A选项,因为的定义域为,的定义域为,定义域不同,不是同一函数,故A错;B选项,因为的定义域为,的定义域也为,且与对应关系一致,是同一函数,故B正确;C选项,因为的定义域为,的定义域为,定义域不同,不是同一函数,故C错;D选项,因为的定义域为,的定义域为,定义域不同,不是同一函数,故D错.故选:B.3、A【解析】根据零点存在定理及函数单调性可知,,解不等式组即可求得的取值范围.【详解】因为在上单调递增,根据零点存在定理可得,解得.故选:A【点睛】本题考查了函数单调性的判断,零点存在定理的应用,根据零点所在区间求参数的取值范围,属于基础题.4、C【解析】由题意,故选C5、C【解析】由于,所以先由已知条件求出,的值,从而可求出答案【详解】,因为,,所以,,因为,,所以,,则故选:C【点睛】此题考查同角三角函数的关系的应用,考查两角差的余弦公式的应用,考查计算能力,属于基础题.6、B【解析】根据函数的单调性可得,再分和两种情况讨论,结合零点的存在性定理即可得出结论.【详解】解:∵是定义在R上的减函数,,∴,∵,∴或,,,当时,,;当,,时,;∴是不可能的.故选:B7、A【解析】根据扇形的面积公式和弧长的计算公式,求得弧长和半径,即可求得结果.【详解】设扇形的半径为,弧长为.由题意:,解得,所以扇形的周长为,故选:A.【点睛】本题考查扇形的弧长和面积公式,属基础题.8、B【解析】由斜二测画法的规则,把直观图还原为原平面图形,再求原图形的周长【详解】解:由斜二测画法的规则知,与轴平行的线段其长度不变以及与横轴平行的性质不变,正方形的对角线在轴上,可求得其长度为,所以在平面图中其在轴上,且其长度变为原来2倍,是,其原来的图形如图所示;所以原图形的周长是:故选:【点睛】本题考查了平面图形的直观图应用问题,能够快速的在直观图和原图之间进行转化,是解题的关键,属于中档题9、A【解析】根据对数、指数、一次函数的单调性判断BCD,根据定义判断的奇偶性.【详解】因为在定义域内都是增函数,所以BCD错误;因为,所以函数为奇函数,且在上单调递减,A正确.故选:A10、A【解析】利用正弦函数的性质,令即可求函数的递增区间,进而判断各选项是否符合要求.【详解】令,可得,当时,是的一个单调增区间,而其它选项不符合.故选:A二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由题意可知,分段函数在上单调递减,因此分段函数的每一段都是单调递减,且左边一段的最小值不小于右边的最大值,即可得到实数的取值范围.【详解】由任意都有成立,可知函数在上单调递减,又因,所以,解得.故答案为:.12、【解析】首先保证真数位置在上恒成立,得到的范围要求,再分和进行讨论,由复合函数的单调性,得到关于的不等式,得到答案.【详解】函数,所以真数位置上的在上恒成立,由一次函数保号性可知,,当时,外层函数为减函数,要使为减函数,则为增函数,所以,即,所以,当时,外层函数为增函数,要使为减函数,则为减函数,所以,即,所以,综上可得的范围为.故答案为.【点睛】本题考查由复合函数的单调性,求参数的范围,属于中档题.13、【解析】因为角的终边经过点,过点P到原点的距离为,所以,所以,故填.14、.【解析】先求圆锥底面圆的半径,再由直角三角形求得圆锥的高,代入公式计算圆锥的体积即可。【详解】设圆锥底面半径为r,则由题意得,解得.∴底面圆的面积为.又圆锥的高.故圆锥的体积.【点睛】此题考查圆锥体积计算,关键是找到底面圆半径和高代入计算即可,属于简单题目。15、【解析】求出函数的定义域,进而求出的范围,利用换元法即可求出函数的值域.【详解】由已知函数的定义域为又,定义域需满足,令,因为,所以,利用二次函数的性质知,函数的值域为故答案为:.16、①④.【解析】根据为定值,求出,再对题目中的命题分析、判断正误即可.【详解】解:对于①,由为定值,所以,解得;由题意知时,单调递减,所以单调递增,即越大越费力,越小越省力;①正确.对于②,由题意知,的取值范围是,所以②错误.对于③,当时,,所以,③错误.对于④,当时,,所以,④正确.综上知,正确结论的序号是①④.故答案为:①④.【点睛】此题考查平面向量数量积的应用,考查分析问题的能力,属于中档题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2);(3).【解析】(1)根据集合的交集的概念得到结果;(2)根据集合的补集的概念得到结果;(3)先求AB的并集,再根据补集的概念得到结果.解析:(1)(2)(3)18、⑴⑵.【解析】(1)取中点,连接、,是二面角的平面角,进而求出此角度数即可;(2)利用等积法或割补法求体积.试题解析:⑴取中点,连接、,,,,且平面,平面,是二面角平面角.在直角三角形中,在直角三角形中,是等边三角形,⑵解法1:,又平面,平面平面,且平面平面在平面内作于,则平面,即是三棱锥的高.在等边中,,三棱锥的体积.解法2:平面在等边中,的面积,三棱锥的体积.19、(1),人(2)当发车时间间隔为分钟时,该线路每分钟的净收益最大,每分钟的最大净收益为元【解析】(1)由题意分别写出与时,的表达式,写成分段函数的形式,可得的表达式,可得的值;(2)分别求出时,时,净收益为的表达式,并求出其最大值,进行比较可得净收益最大及收益最大时的时间.【详解】解:当时,当时,设解得,所以,所以(人)当时,当时当时,当且仅当时,即时,取到最大值.答:的表达式为当发车时间间隔为分钟时,地铁的载客量为人.当发车时间间隔为分钟时,该线路每分钟的净收益最大,每分钟的最大净收益为元.【点睛】本题主要考查分段函数解析式的求解及函数模型的实际应用,及利用基本不等式求

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论