版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省玉溪市新平县三中2026届高二数学第一学期期末经典模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知圆C1:(x+3)2+y2=1和圆C2:(x-3)2+y2=9,动圆M同时与圆C1及圆C2相外切,求动圆圆心M的轨迹方程()A.x2-=1(x≤-1) B.x2-=1C.x2-=1(x1) D.-x2=12.双曲线的左右焦点分别是,,直线与双曲线在第一象限的交点为,在轴上的投影恰好是,则双曲线的离心率是()A. B.C. D.3.若(为虚数单位),则复数在复平面内的点位于()A.第一象限 B.第二象限C.第三象限 D.第四象限4.若直线被圆截得的弦长为4,则的最大值是()A. B.C.1 D.25.随机地向两个标号分别为1与2的格子涂色,涂上红色或绿色,在已知其中一个格子颜色为红色条件下另一个格子颜色也为红色的概率为()A. B.C. D.6.如图,四棱锥中,底面是边长为的正方形,平面,为底面内的一动点,若,则动点的轨迹在()A.圆上 B.双曲线上C.抛物线上 D.椭圆上7.设函数的定义域为,满足,且当时,.若对任意,都有,则的取值范围是()A. B.C. D.8.若数列是等差数列,其前n项和为,若,且,则等于()A. B.C. D.9.设、是两条不同的直线,、、是三个不同的平面,则下列命题正确的是()A.若,则 B.若,则C.若,则 D.若,则10.求点关于x轴的对称点的坐标为()A. B.C. D.11.已知抛物线的焦点为F,过点F作倾斜角为的直线l与抛物线交于两点,则POQ(O为坐标原点)的面积S等于()A. B.C. D.12.设等差数列的前n项和为,若,,则()A.60 B.80C.90 D.100二、填空题:本题共4小题,每小题5分,共20分。13.如图,四棱锥的底面是正方形,底面,为的中点,若,则点到平面的距离为___________.14.若点为圆上的一个动点,则点到直线距离的最大值为________15.已知抛物线C:的焦点为F,过M(4,0)的直线交C于A、B两点,设,的面积分别为、,则的最小值为______16.若正数x、y满足,则的最小值等于________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在公差为的等差数列中,已知,且成等比数列.(Ⅰ)求;(Ⅱ)若,求.18.(12分)如图,在直四棱柱中,(1)求二面角的余弦值;(2)若点P为棱的中点,点Q在棱上,且直线与平面所成角的正弦值为,求的长19.(12分)已知抛物线上一点到其焦点F的距离为2.(1)求拋物线方程;(2)直线与拋物线相交于两点,求的长.20.(12分)已知数列的前n项和,满足,.(1)求证:数列是等差数列;(2)令,求数列的前n项和.21.(12分)已知椭圆,过焦点且垂直于长轴的弦长为1,且焦点与短轴两端点构成等边三角形.(1)求椭圆的方程;(2)过点的直线交椭圆于,两点,交直线于点,且,.求证:为定值,并计算出该定值.22.(10分)已知圆与(1)过点作直线与圆相切,求的方程;(2)若圆与圆相交于、两点,求的长
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据双曲线定义求解【详解】,则根据双曲线定义知的轨迹为的左半支故选:A第II卷(非选择题2、D【解析】根据题意的到,,代入到双曲线方程,解得,即,则,即,即,求解方程即可得到结果.【详解】设原点为,∵直线与双曲线在第一象限的交点在轴上的投影恰好是,∴,且,∴,将代入到双曲线方程,可得,解得,即,则,即,即,解得(舍负),故.故选:D.3、A【解析】根据复数运算法则求出z=a+bi形式,根据复数的几何意义即可求解.【详解】,z对应的点在第一象限.故选:A4、A【解析】根据弦长求得的关系式,结合基本不等式求得的最大值.【详解】圆的圆心为,半径为,所以直线过圆心,即,由于为正数,所以,当且仅当时,等号成立.故选:A5、D【解析】根据古典概型的概率公式即可得出答案.【详解】在已知其中一个格子颜色为红色条件下另一个格子颜色有红色与绿色两种情况,其中一个格子颜色为红色条件下另一个格子颜色也为红色的情况有1种,所以在已知其中一个格子颜色为红色条件下另一个格子颜色也为红色的概率为.故选:D.6、A【解析】根据题意,得到两两垂直,以点为坐标原点,分别以为轴,建立空间直角坐标系,设,由题意,得到,,再由得到,求出点的轨迹,即可得出结果.【详解】由题意,两两垂直,以点为坐标原点,分别以为轴,建立如图所示的空间直角坐标系,因为底面是边长为的正方形,则,,因为为底面内的一动点,所以可设,因此,,因为平面,所以,因此,所以由得,即,整理得:,表示圆,因此,动点的轨迹在圆上.故选:A.【点睛】本题主要考查立体几何中的轨迹问题,灵活运用空间向量的方法求解即可,属于常考题型.7、D【解析】由题意得当时,,根据题意作出函数的部分图象,再结合图象即可求出答案【详解】解:当时,,又,∴当时,,∴在上单调递增,在上单调递减,且;又,则函数图象每往右平移两个单位,纵坐标变为原来的倍,作出其大致图象得,当时,由得,或,由图可知,若对任意,都有,则,故选:D【点睛】本题主要考查函数的图象变换,考查数形结合思想,属于中档题8、B【解析】由等差数列的通项公式和前项和公式求出的首项和公差,即可求出.【详解】设等差数列的公差为,则解得:,所以.故选:B.9、B【解析】根据线线、线面、面面的位置关系,对选项进行逐一判断即可.【详解】选项A.一条直线垂直于一平面内的,两条相交直线,则改直线与平面垂直则由,不能得出,故选项A不正确.选项B.,则正确,故选项B正确.选项C若,则与可能相交,可能异面,也可能平行,故选项C不正确.选项D.若,则与可能相交,可能平行,故选项D不正确.故选:B10、D【解析】根据点关于坐标轴的对称点特征,直接写出即可.【详解】A点关于x轴对称点,横坐标不变,纵坐标与竖坐标为原坐标的相反数,故点的坐标为,故选:D11、A【解析】由抛物线的方程可得焦点的坐标,由题意设直线的方程,与抛物线的方程,联立求出两根之和及两根之积,进而求出,的纵坐标之差的绝对值,代入三角形的面积公式求出面积【详解】抛物线的焦点为,,由题意可得直线的方程为,设,,,,联立,整理可得:,则,,所以,所以,故选:A12、D【解析】由题设条件求出,从而可求.【详解】设公差为,因为,,故,解得,故,故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】以点为坐标原点,、、所在直线分别为、、轴建立空间直角坐标系,利用空间向量法可求得点到平面的距离.【详解】因为底面,,以点为坐标原点,、、所在直线分别为、、轴建立空间直角坐标系,则、、、,设平面的法向量为,,,则,取,可得,,所以,点到平面的距离为.故答案为:.14、7【解析】根据给定条件求出圆C的圆心C到直线l的距离即可计算作答.【详解】圆的圆心,半径,点C到直线的距离,所以圆C上点P到直线l距离的最大值为.故答案为:715、【解析】设直线的方程为,,与抛物线的方程联立整理得,由三角形的面积公式求得,再根据基本不等式可得答案.【详解】解:由抛物线C:得焦点,又直线交C于A、B两点,所以直线的斜率不为0,则设直线的方程为,,联立,整理得,则,又,,所以,又,当且仅当,即时取等号,所以的最小值为.故答案为:.16、9【解析】把要求的式子变形为,利用基本不等式即可得结果.【详解】因为,所以,当且仅当时取等号,故答案为.【点睛】本题主要考查利用基本不等式求最值,属于难题.利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数否在定义域内,二是多次用或时等号能否同时成立).三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ)或(Ⅱ)【解析】(Ⅰ)由题意求得数列的公差后可得通项公式.(Ⅱ)结合条件可得,分和两种情况去掉中的绝对值后,利用数列的前n项和公式求解试题解析:(Ⅰ)∵成等比数列,∴,整理得,解得或,当时,;当时,所以或(Ⅱ)设数列前项和为,∵,∴,当时,,∴;当时,综上18、(1),(2)【解析】(1)推导出,以A为原点,分别以,,所在的直线为轴,轴,轴,建立如图所示的空间直角坐标系,利用空间向量求二面角的余弦值;(2)设,则,求出平面的法向量,利用空间向量求出的长【详解】解(1)在直四棱柱中,因为平面,平面,平面,所以因为,所以以A为原点,分别以,,所在的直线为轴,轴,轴,建立如图所示的空间直角坐标系,因为,所以,所以,设平面的一个法向量为,则,令,则,因为平面,所以平面的一个法向量为,设二面角的平面角为,由图可知为锐角,所以二面角的余弦值为(2)设,则,因为点为的中点,所以,则,设平面一个法向量为,则,令,则,设直线与平面所成角的大小为,因为直线与平面所成角的正弦值为,所以,解得或(舍去)所以【点睛】关键点点睛:此题考查二面角的求法,考查线段长的求法,考查空间中线线、线面、面面间的位置关系等知识,考查运算能力,解题的关键是根据是建立空间直角坐标系,利用空间向量求解,属于中档题19、(1)(2)【解析】(1)根据抛物线焦半径公式即可得解;(2)联立方程组求出交点坐标,即可得到弦长.【小问1详解】由题:抛物线上一点到其焦点F的距离为2,即,所以抛物线方程:【小问2详解】联立直线和得,解得,,20、(1)证明见解析(2)【解析】(1)先将变为,然后等式两边同除即可得答案;(2)求出,再用错位相减求和【小问1详解】证明:∵∴由已知易得,∴∴数列是首项,公差为的等差数列;【小问2详解】由(1)可知,∴∴①②①-②有∴21、(1)(2)证明见解析,定值为【解析】(1)由题意得,从而写出椭圆的方程即可;(2)易知直线斜率存在,令,,,,,将直线的方程代入椭圆的方程,消去得到关于的一元二次方程,再结合根系数的关系利用向量的坐标公式即可求得值,从而解决问题.【小问1详解】(1)由条件得,所以方程为【小问2详解】易知直线斜率存在,令,,,由,因为,所以,即-1-x1因为,所以,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年大学社会体育指导与管理(社会体育学)试题及答案
- 2025年中职播音与主持(播音基础技巧)试题及答案
- 2025年高职教育学(教育管理学)试题及答案
- 2026年蹦床用品营销(营销规范)试题及答案
- 2025年大学水产养殖技术(水产养殖学)试题及答案
- 2025年大学食品科学与工程(饼干生产技术)试题及答案
- 2025年高职(药学)药学基础阶段测试试题及答案
- 2025年高职检验检测技术与管理(检测报告编制)试题及答案
- 2025年高职(药品注册管理实务)资料准备专项测试试题及答案
- 2025年大学云计算(云计算架构设计)试题及答案
- 生态环境监测数据分析报告
- 金融机构衍生品交易操作规范
- 医院检查、检验结果互认制度
- 2025年医院物价科工作总结及2026年工作计划
- 2025-2026学年上学期成都小学数学四年级期末典型卷1
- 2026年江西应用技术职业学院单招职业适应性测试必刷测试卷必考题
- 统编版语文二年级上册知识点
- 北京师范大学介绍
- 售后技术服务流程规范
- 六性分析报告标准格式与范例
- 供水管网施工期间居民供水保障方案
评论
0/150
提交评论