2026届北京市西城区第十五中学高二数学第一学期期末检测模拟试题含解析_第1页
2026届北京市西城区第十五中学高二数学第一学期期末检测模拟试题含解析_第2页
2026届北京市西城区第十五中学高二数学第一学期期末检测模拟试题含解析_第3页
2026届北京市西城区第十五中学高二数学第一学期期末检测模拟试题含解析_第4页
2026届北京市西城区第十五中学高二数学第一学期期末检测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届北京市西城区第十五中学高二数学第一学期期末检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知集合M={0,x},N={1,2},若M∩N={2},则M∪N=()A.{0,x,1,2} B.{2,0,1,2}C.{0,1,2} D.不能确定2.已知直线与平行,则系数()A. B.C. D.3.若直线被圆截得的弦长为,则的最小值为()A. B.C. D.4.曲线在处的切线如图所示,则()A.0 B.C. D.5.直线平分圆的周长,过点作圆的一条切线,切点为,则()A.5 B.C.3 D.6.与向量平行,且经过点的直线方程为()A. B.C. D.7.如图,M为OA的中点,以为基底,,则实数组等于()A. B.C. D.8.在空间直角坐标系下,点关于轴对称的点的坐标为()A. B.C. D.9.从某个角度观察篮球(如图1),可以得到一个对称的平面图形,如图2所示,篮球的外轮形为圆O,将篮球表面的粘合线看成坐标轴和双曲线,若坐标轴和双曲线与圆O的交点将圆O的周长八等分,AB=BC=CD,则该双曲线的离心率为()A. B.C. D.10.用1,2,3,4这4个数字可写出()个没有重复数字的三位数A.24 B.12C.81 D.6411.已知函数,,若,使得,则实数的取值范围是()A. B.C. D.12.已知直三棱柱中,,,,则异面直线与所成角的余弦值为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若命题“,不等式恒成立”为真命题,则实数a的取值范围是________.14.已知双曲线的左右焦点分别为,过点的直线交双曲线右支于A,B两点,若是等腰三角形,且,则的面积为___________.15.在等差数列中,前n项和记作,若,则______16.以下数据为某校参加数学竞赛的名同学的成绩:,,,,,,,,,,,,,,,,,,,.则这人成绩的第百分位数可以是______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的离心率为,以坐标原点为圆心,以椭圆M的短半轴长为半径的圆与直线有且只有一个公共点(1)求椭圆M的标准方程;(2)过椭圆M的右焦点F的直线交椭圆M于A,B两点,过F且垂直于直线的直线交椭圆M于C,D两点,则是否存在实数使成立?若存在,求出的值;若不存在,请说明理由18.(12分)已知抛物线上的点M(5,m)到焦点F的距离为6.(1)求抛物线C的方程;(2)过点作直线l交抛物线C于A,B两点,且点P是线段AB的中点,求直线l方程.19.(12分)已知函数.(1)求的单调递减区间;(2)在锐角中,,,分别为角,,的对边,且满足,求的取值范围.20.(12分)已知圆C:(1)若过点的直线l与圆C相交所得的弦长为,求直线l的方程;(2)若P是直线:上的动点,PA,PB是圆C的两条切线,A,B是切点,求四边形PACB面积的最小值21.(12分)甲、乙等6个班级参加学校组织广播操比赛,若采用抽签的方式随机确定各班级的出场顺序(序号为1,2,…,6),求:(1)甲、乙两班级的出场序号中至少有一个为奇数的概率;(2)甲、乙两班级之间的演出班级(不含甲乙)个数X的分布列与期望22.(10分)已知;.(1)若为真命题,求实数的取值范围;(2)若为假命题,为真命题,求实数的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】集合M={0,x},N={1,2},若M∩N={2},则.所以.故选C.点睛:集合的交集即为由两个集合的公共元素组成的集合,集合的并集即由两集合的所有元素组成.2、B【解析】由直线的平行关系可得,解之可得【详解】解:直线与直线平行,,解得故选:3、D【解析】先根据已知条件得出,再利用基本不等式求的最小值即可.【详解】圆的标准方程为,圆心为,半径为,若直线被截得弦长为,说明圆心在直线:上,即,即,∴,当且仅当,即时,等号成立故选:D.【点睛】本题主要考查利用基本不等式求最值,本题关键是求出,属常规考题.4、C【解析】由图示求出直线方程,然后求出,,即可求解.【详解】由直线经过,,可求出直线方程为:∵在处的切线∴,∴故选:C【点睛】用导数求切线方程常见类型:(1)在出的切线:为切点,直接写出切线方程:;(2)过出的切线:不是切点,先设切点,联立方程组,求出切点坐标,再写出切线方程:.5、B【解析】根据圆的性质,结合圆的切线的性质进行求解即可.【详解】由,所以该圆的圆心为,半径为,因为直线平分圆的周长,所以圆心在直线上,故,因此,,所以有,所以,故选:B6、A【解析】利用点斜式求得直线方程.【详解】依题意可知,所求直线的斜率为,所以所求直线方程为,即.故选:A7、B【解析】根据空间向量减法的几何意义进行求解即可.【详解】,所以实数组故选:B8、C【解析】由空间中关于坐标轴对称点坐标的特征可直接得到结果.【详解】关于轴对称的点的坐标不变,坐标变为相反数,关于轴对称的点为.故选:C.9、D【解析】设出双曲线方程,通过做标准品和双曲线与圆O的交点将圆的周长八等分,且AB=BC=CD,推出点在双曲线上,然后求出离心率即可.【详解】设双曲线的方程为,则,因为AB=BC=CD,所以,所以,因为坐标轴和双曲线与圆O的交点将圆O的周长八等分,所以在双曲线上,代入可得,解得,所以双曲线的离心率为.故选:D10、A【解析】由题意,从4个数中选出3个数出来全排列即可.【详解】由题意,从4个数中选出3个数出来全排列,共可写出个三位数.故选:A11、A【解析】由定义证明函数的单调性,再由函数不等式恒能成立的性质得出,从而得出实数的取值范围.【详解】任取,,即函数在上单调递减,若,使得,则即故选:A【点睛】结论点睛:本题考查不等式恒成立问题,解题关键是转化为求函数的最值,转化时要注意全称量词与存在量词对题意的影响.等价转化如下:(1),,使得成立等价于(2),,不等式恒成立等价于(3),,使得成立等价于(4),,使得成立等价于12、C【解析】作出辅助线,找到异面直线与所成角,进而利用余弦定理及勾股定理求出各边长,最后利用余弦定理求出余弦值.【详解】如图所示,把三棱柱补成四棱柱,异面直线与所成角为,由勾股定理得:,,∴故选:C二、填空题:本题共4小题,每小题5分,共20分。13、【解析】,不等式恒成立,只要即可,利用基本不等式求出即可得出答案.【详解】解:因为,不等式恒成立,只要即可,因为,所以,则,当且仅当,即时取等号,所以,所以.故答案为:.14、【解析】根据题意可知,,再结合,即可求出各边,从而求出的面积【详解】,所以,而是的等腰三角形,所以,故的面积为故答案为:15、16【解析】根据等差数列前项和公式及下标和性质以及通项公式计算可得;【详解】解:因为,所以,即,所以,所以,所以;故答案为:16、【解析】利用百分位数的求法直接求解即可.【详解】解:将所给数据按照从小到大的顺序排列:,,,,,,,,,,,,,,,,,,,.数据量,∵是整数,∴故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)存在,【解析】(1)求出后可得椭圆的标准方程.(2)设直线,联立直线方程和椭圆方程,消元后利用韦达定理可用表示,从而可求的值.【小问1详解】据题意,得,∴,∴所求椭圆M的标准方程为【小问2详解】据(1)求解知,点F坐标为若直线的斜率存在,且不等于0,设直线据得设,则,∴同理可求知,∴,∴,即此时存满足题设;若直线的斜率不存在,则;若直线的斜率为0,则,此时若,则综上,存在实数,且使18、(1)(2)【解析】(1)由抛物线定义有求参数,即可写出抛物线方程.(2)由题意设,联立抛物线方程,结合韦达定理、中点坐标求参数k,即可得直线l方程【小问1详解】由题设,抛物线准线方程为,∴抛物线定义知:可得,故【小问2详解】由题设,直线l的斜率存在且不为0,设联立方程,得,整理得,则.又P是线段AB的中点,∴,即故l19、(1)(2)【解析】(1)根据降幂公式化简的解析式,再用整体代入法即可求出函数的单调递减区间;(2)由正弦定理边化角,从而可求得,根据锐角三角形可得从而可求出答案【详解】解:(1),由得所以的单调递减区间为;(2)由正弦定理得,∵∴,即,,得,或,解得,或(舍),∵为锐角三角形,∴解得∴∴的取值范围为【点睛】本题主要考查三角函数的化简与性质,考查正弦定理的作用,属于基础题20、(1)或.(2)8【解析】(1)先判断当斜率不存在时,不满足条件;再判断当斜率存在时,设利用垂径定理列方程求出k,即可求出直线方程;(2)过P作圆C的两条切线,切点分别为A、B,连结CA、CB,得到.判断出当时,最小,四边形PACB面积取得最小值.利用点到直线的距离公式求出,,即可求出四边形PACB面积的最小值.【小问1详解】圆C:化为标准方程为:,所以圆心为,半径为r=4.(1)当斜率不存在时,x=1代入圆方程得,弦长为,不满足条件;(2)当斜率存在时,设即.圆心C到直线l的距离,解得:或k=0,所以直线方程为或.【小问2详解】过P作圆C的两条切线,切点分别为A、B,连结CA、CB,则.因为,所以所以.所以当时,最小,四边形PACB面积取得最小值.所以,所以,即四边形PACB面积的最小值为8.21、(1)(2)X01234p期望为.【解析】(1)求出甲、乙两班级的出场序号中均为偶数的概率,进而求出答案;(2)求出X的可能取值及相应的概率,写出分布列,求出期望值.【小问1详解】由题意得:甲、乙两班级的出场序号中均为偶数的概率为,故甲、乙两班级的出场序号中至少有一个为奇数的概率;【小问2详解】X的可能取值为0,1,2,3,4,,,,故分

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论