2026届辽宁省北票市第三高级中学高二数学第一学期期末质量检测模拟试题含解析_第1页
2026届辽宁省北票市第三高级中学高二数学第一学期期末质量检测模拟试题含解析_第2页
2026届辽宁省北票市第三高级中学高二数学第一学期期末质量检测模拟试题含解析_第3页
2026届辽宁省北票市第三高级中学高二数学第一学期期末质量检测模拟试题含解析_第4页
2026届辽宁省北票市第三高级中学高二数学第一学期期末质量检测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届辽宁省北票市第三高级中学高二数学第一学期期末质量检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图所示,直三棱柱中,,,分别是,的中点,,则与所成角的余弦值为()A. B.C. D.2.函数在上单调递增,则k的取值范围是()A B.C. D.3.在一个正方体中,为正方形四边上的动点,为底面正方形的中心,分别为中点,点为平面内一点,线段与互相平分,则满足的实数的值有A.0个 B.1个C.2个 D.3个4.设,分别是双曲线:的左、右焦点,过点作的一条渐近线的垂线,垂足为,,为坐标原点,则双曲线的离心率为()A. B.2C. D.5.已知向量,,,若,则实数()A. B.C. D.6.在二面角的棱上有两个点、,线段、分别在这个二面角的两个面内,并且都垂直于棱,若,,,,则这个二面角的大小为()A. B.C. D.7.若等差数列的前项和为,首项,,,则满足成立的最大正整数是()A. B.C. D.8.下列说法正确的是()A.空间中的任意三点可以确定一个平面B.四边相等的四边形一定是菱形C.两条相交直线可以确定一个平面D.正四棱柱的侧面都是正方形9.已知等差数列满足,则等于()A. B.C. D.10.向量,向量,若,则实数()A. B.1C. D.11.已知椭圆:的左、右焦点为,,上顶点为P,则()A.为锐角三角形 B.为钝角三角形C.为直角三角形 D.,,三点构不成三角形12.如图,在平行六面体中,AC与BD的交点为M.设,则下列向量中与相等的向量是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知双曲线的两条渐近线的夹角为,则双曲线的实轴长为____14.若经过点且斜率为1的直线与抛物线交于,两点,则______.15.如图,已知椭圆C1和双曲线C2交于P1、P2、P3、P4四个点,F1和F2分别是C1的左右焦点,也是C2的左右焦点,并且六边形是正六边形.若椭圆C1的方程为,则双曲线方程为______.16.曲线的长度为____________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知A,B两地相距200km,某船从A地逆水到B地,水速为8km/h,船在静水中的速度为vkm/h(v>8).若船每小时的燃料费与其在静水中速度的平方成正比,比例系数为k,当v=12km/h,每小时的燃料费为720元(1)求比例系数k(2)当时,为了使全程燃料费最省,船的实际前进速度应为多少?(3)当(x为大于8的常数)时,为了使全程燃料费最省,船的实际前进速度应为多少?18.(12分)在△ABC中,角A,B,C所对的边为a,b,c,其中,,且(1)求角B的值;(2)若,判断△ABC的形状19.(12分)某校从高一年级学生中随机抽取40名中学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:,,…,所得到如图所示的频率分布直图(1)求图中实数的值;(2)若该校高一年级共有640人,试估计该校高一年级期中考试数学成绩不低于60分的人数;(3)若从数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取两名学生,求这2名学生的数学成绩之差的绝对值不大于10的概率.20.(12分)如图,在四棱锥P­ABCD中,PD⊥底面ABCD,AB∥CD,AB=2,CD=3,M为PC上一点,且PM=2MC.(1)求证:BM∥平面PAD;(2)若AD=2,PD=3,∠BAD=60°,求三棱锥P­ADM的体积21.(12分)已知数列的前项和(1)求数列的通项公式;(2)求数列的前项和22.(10分)已知数列{an}的前n项和为Sn,an>0,a1<2,6Sn=(an+1)(an+2).(1)求证:数列{an}是等差数列;(2)令,数列{bn}的前n项和为Tn,求证:.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】取的中点为,的中点为,然后可得或其补角即为与所成角,然后在中求出答案即可.【详解】取的中点为,的中点为,,,所以或其补角即为与所成角,设,则,,在,,故选:A2、A【解析】对函数求导,由于函数在给定区间上单调递增,故恒成立.【详解】由题意可得,,,,.故选:A3、C【解析】因为线段D1Q与OP互相平分,所以四点O,Q,P,D1共面,且四边形OQPD1为平行四边形.若P在线段C1D1上时,Q一定在线段ON上运动,只有当P为C1D1的中点时,Q与点M重合,此时λ=1,符合题意若P在线段C1B1与线段B1A1上时,在平面ABCD找不到符合条件Q;在P在线段D1A1上时,点Q在直线OM上运动,只有当P为线段D1A1的中点时,点Q与点M重合,此时λ=0符合题意,所以符合条件的λ值有两个故选C.4、D【解析】先求过右焦点且与渐近线垂直的直线方程,与渐近线方程联立求点P的坐标,再用两点间的距离公式,结合已知条件,得到关于a,c的关系式.【详解】双曲线的左右焦点分别为、,一条渐近线方程为,过与这条渐近线垂直的直线方程为,由,得到点P的坐标为,又因为,所以,所以,所以.故选:D5、C【解析】先根据题意求出,然后再根据得出,最后通过计算得出结果.【详解】因为,,所以,又,,所以,即,解得.故选:.【点睛】本题主要考查向量数量积的坐标运算及向量垂直的相关性质,熟记运算法则即可,属于常考题型.6、C【解析】设这个二面角的度数为,由题意得,从而得到,由此能求出结果.【详解】设这个二面角的度数为,由题意得,,,解得,∴,∴这个二面角的度数为,故选:C.【点睛】本题考查利用向量的几何运算以及数量积研究面面角.7、B【解析】由等差数列的,及得数列是递减的数列,因此可确定,然后利用等差数列的性质求前项和,确定和的正负【详解】∵,∴和异号,又数列是等差数列,首项,∴是递减的数列,,由,所以,,∴满足的最大自然数为4040故选:B【点睛】关键点睛:本题求满足的最大正整数的值,关键就是求出,时成立的的值,解题时应充分利用等差数列下标和的性质求解,属于中档题.8、C【解析】根据立体几何相关知识对各选项进行判断即可.【详解】对于A,根据公理2及推论可知,不共线的三点确定一个平面,故A错误;对于B,在一个平面内,四边相等的四边形才一定是菱形,故B错误;对于C,根据公理2及推论可知,两条相交直线可以确定一个平面,故C正确;对于D,正四棱柱指上、下底面都是正方形且侧棱垂直于底面的棱柱,侧面可以是矩形,故D错误.故选:C9、A【解析】利用等差中项求出的值,进而可求得的值.【详解】因为得,因此,.故选:A.10、C【解析】由空间向量垂直的坐标表示列方程即可求解.【详解】因为向量,向量,若,则,解得:,故选:C.11、A【解析】根据题意求得,要判断的形状,只需要看是什么角即可,利用余弦定理判断,从而可得结论.【详解】解:由椭圆:,得,则,则,所以且为锐角,因为,所以锐角,所以为锐角三角形.故选:A.12、B【解析】根据代入计算化简即可.【详解】故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据已知条件求得,由此求得实轴长.【详解】由于,双曲线的渐近线方程为,所以双曲线的渐近线与轴夹角小于,由得,实轴长故答案为:14、【解析】由题意写出直线的方程与抛物线方程联立,得出韦达定理,由弦长公式可得答案.【详解】设,则直线的方程为由,得所以所以故答案为:15、【解析】先根据椭圆的方程求得焦点坐标,然后根据为正六边形求得点的坐标,即点在双曲线上,然后解出方程即可【详解】设双曲线的方程为:根据椭圆的方程可得:又为正六边形,则点的坐标为:则点在双曲线上,可得:又解得:故答案为:16、【解析】曲线的图形是:以原点为圆心,以2为半径的圆的左半圆,进而可求出结果.【详解】解:由得,所以曲线()的图形是:以原点为圆心,以2为半径的圆的左半圆,∴曲线()的长度是,故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)5(2)8km/h(3)答案见解析【解析】(1)列出关系式,根据当v=12km/h,每小时的燃料费为720元即可求解;(2)列出燃料费的函数解析式,利用导数求其最值即可;(3)讨论x的范围,结合(2)的结论可得答案.【小问1详解】设每小时的燃料费为,则当v=12km/h,每小时的燃料费为720元,代入得.【小问2详解】由(1)得.设全程燃料费为y,则(),所以,令,解得v=0(舍去)或v=16,所以当时,;当时,,所以当v=16时,y取得最小值,故为了使全程燃料费最省,船的实际前进速度应为8km/h【小问3详解】由(2)得,若时,则y在区间上单调递减,当v=x时,y取得最小值;若时,则y区间(8,16)上单调递减,在区间上单调递增,当v=16时,y取得最小值;综上,当时,船的实际前进速度为8km/h,全程燃料费最省;当时,船的实际前进速度应为(x-8)km/h,全程燃料费最省18、(1)(2)等边三角形【解析】(1)把化为,然后由正弦定理化边为角,利用两角和的正弦公式、诱导公式可求得;(2)由余弦定理及三角形面积公式可得,从而得出三角形为等边三角形【小问1详解】∵,∴由正弦定理得,∵,∴,∴,又,所以,可得;【小问2详解】由(1)知余弦定理,①,②由①②可得:,又,所以,所以该三角形为等边三角形19、(1)a=0.03;(2)544人;(3).【解析】(1)根据图中所有小矩形的面积之和等于1求解.

(2)根据频率分布直方图,得到成绩不低于60分的频率,再根据该校高一年级共有学生640人求解.

(3)由频率分布直方图得到成绩在[40,50)和[90,100]分数段内的人数,先列举出从数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取两名学生的基本事件总数,再得到两名学生的数学成绩之差的绝对值不大于10”的基本事件数,代入古典概型概率求解.【详解】(1)∵图中所有小矩形的面积之和等于1,∴10×(0.005+0.01+0.02+a+0.025+0.01)=1,解得a=0.03.

(2)根据频率分布直方图,成绩不低于60分的频率为1−10×(0.005+0.01)=0.85,

∵该校高一年级共有学生640人,

∴由样本估计总体的思想,可估计该校高一年级数学成绩不低于60分的人数约为640×0.85=544人.

(3)成绩在[40,50)分数段内的人数为40×0.05=2人,分别记为A,B,

成绩在[90,100]分数段内的人数为40×0.1=4人,分别记为C,D,E,F.

若从数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取两名学生,

则所有的基本事件有:(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),

(C,F),(D,E),(D,F),(E,F)共15种.

如果两名学生的数学成绩都在[40,50)分数段内或都在[90,100]分数段内,

那么这两名学生的数学成绩之差的绝对值一定不大于10.

如果一个成绩在[40,50)分数段内,另一个成绩在[90,100]分数段内,

那么这两名学生数学成绩之差的绝对值一定大于10.

记“这两名学生的数学成绩之差的绝对值不大于10”为事件M,

则事件M包含的基本事件有:(A,B),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F)共7种.

∴所求概率为P(M)=.【点睛】本题主要考查频率分布直方图的应用以及古典概型概率的求法,还考查了运算求解的能力,属于中档题.20、(1)证明见解析;(2).【解析】(1)过M作MN∥CD交PD于点N,证明四边形ABMN为平行四边形,即可证明BM∥平面PAD.(2)过B作AD的垂线,垂足为E,证明BE⊥平面PAD,在利用VP-ADM=VM-PAD求三棱锥P-ADM的体积.【详解】解:(1)证明:如图,过M作MN∥CD交PD于点N,连接AN.∵PM=2MC,∴MN=CD.又AB=CD,且AB∥CD∴AB∥MN∴四边形ABMN为平行四边形∴BM∥AN.又BM⊄平面PAD,AN⊂平面PAD∴BM∥平面PAD.(2)如图,过B作AD的垂线,垂足为E.∵PD⊥平面ABCD,BE⊂平面ABCD∴PD⊥BE.又AD⊂平面PAD,PD⊂平面PAD,AD∩PD=D∴BE⊥平面PAD.由(1)知,BM∥平面PAD∴点M到平面PAD的距离等于点B到平面PAD的距离,即BE.连接BD,在△ABD中,AB=AD=2,∠BAD=60°,∴BE=则三棱锥P­ADM的体积VP-ADM=VM-PAD=×S△PAD×BE=×3×=.21、(1)(2)【解析】(1)利用与的关系求数列的通项公式;(2)利用错位相减法求和即可.【小问1详解】因为,故当时,,两式相减

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论