版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
成都市2026届高二上数学期末质量检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.(文科)已知点为曲线上的动点,为圆上的动点,则的最小值是A.3 B.5C. D.2.已知三角形三个顶点为、、,则边上的高所在直线的方程为()A. B.C. D.3.对于两个平面、,“内有无数多个点到的距离相等”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件4.若直线与直线垂直,则()A6 B.4C. D.5.某三棱锥的三视图如图所示,则该三棱锥内切球的表面积为A.B.C.D.6.某次生物实验6个小组的耗材质量(单位:千克)分别为1.71,1.58,1.63,1.43,1.85,1.67,则这组数据的中位数是()A.1.63 B.1.67C.1.64 D.1.657.双曲线的离心率的取值范围为,则实数的取值范围为()A. B.C. D.8.已知是两个数1,9的等比中项,则圆锥曲线的离心率为()A.或 B.或C. D.9.已知,则a,b,c的大小关系为()A. B.C. D.10.在等差数列中,若,则()A.6 B.9C.11 D.2411.已知公差不为0的等差数列中,,且,,成等比数列,则其前项和取得最大值时,的值为()A.12 B.13C.12或13 D.13或1412.彬塔,又称开元寺塔、彬县塔,民间称“雷峰塔”,位于陕西省彬县城内西南紫薇山下.某同学为测量彬塔高度,选取了与塔底在同一水平面内的两个测量基点与,现测得,,,在点测得塔顶的仰角为60°,则塔高()A.30m B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知等差数列的前项和为,若,,则数列的前2021项和为___________.14.已知定义在R上的函数的导函数,且,则实数的取值范围为__________.15.已知是椭圆的一个焦点,为椭圆上一点,为坐标原点,若为等边三角形,则椭圆的离心率为__________16.如图,在棱长为2的正方体中,点分别是棱的中点,是侧面正方形内一点(含边界),若平面,则线段长度的取值范围是__________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)两人下棋,每局均无和棋且获胜的概率为,某一天这两个人要进行一场五局三胜的比赛,胜者赢得2700元奖金,(1)分别求以获胜、以获胜的概率;(2)若前两局双方战成,后因为其他要事而终止比赛,间,怎么分奖金才公平?18.(12分)在平面直角坐标系中,已知点在椭圆上,其中为椭圆E的离心率(1)求b的值;(2)A,B分别为椭圆E的左右顶点,过点的直线l与椭圆E相交于M,N两点,直线与交于点T,求证:19.(12分)在数列中,,,数列满足(1)求证:数列是等比数列,并求出数列的通项公式;(2)数列前项和为,且满足,求的表达式;(3)令,对于大于的正整数、(其中),若、、三个数经适当排序后能构成等差数列,求符合条件的数组.20.(12分)在中,,,的对边分别是,,,已知.(1)求;(2)若,且的面积为4,求的周长21.(12分)新冠疫情下,有一学校推出了食堂监管力度的评价与食品质量的评价系统,每项评价只有合格和不合格两个选项,师生可以随时进行评价,某工作人员利用随机抽样的方法抽取了200位师生的信息,发现对监管力度满意的占75%,对食品质量满意的占60%,其中对监管力度和食品质量都满意的有80人.(1)完成列联表,试问:是否有99%的把握判断监管力度与食品质量有关联?监督力度情况食品质量情况对监督力度满意对监督力度不满意总计对食品质量满意80对食品质量不满意总计200(2)为了改进工作作风,针对抽取的200位师生,对监管力度不满意的人抽取3位征求意见,用X表示3人中对监管力度与食品质量都不满意的人数,求X的分布列与均值.参考公式:,其中.参考数据:①当时,有90%的把握判断变量A、B有关联;②当时,有95%的把握判断变量A、B有关联;③当时,有99%的把握判断变量A、B有关联.22.(10分)已知命题p:集合为空集,命题q:不等式恒成立(1)若p为真命题,求实数a的取值范围;(2)若为真命题,为假命题,求实数a的取值范围
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】数形结合分析可得,当时能够取得的最小值,根据点到圆心的距离减去半径求解即可.【详解】由对勾函数的性质,可知,当且仅当时取等号,结合图象可知当A点运动到时能使点到圆心的距离最小,最小为4,从而的最小值为.故选:A【点睛】本题考查两动点间距离的最值问题,考查转化思想与数形结合思想,属于中档题.2、A【解析】求出直线的斜率,可求得边上的高所在直线的斜率,利用点斜式可得出所求直线的方程.【详解】直线的斜率为,故边上的高所在直线的斜率为,因此,边上的高所在直线的方程为.故选:A.3、B【解析】根据平面的性质分别判断充分性和必要性.【详解】充分性:若内有无数多个点到的距离相等,则、平行或相交,故充分性不成立;必要性:若,则内每个点到的距离相等,故必要性成立,所以“内有无数多个点到的距离相等”是“”的必要不充分条件.故选:B.4、A【解析】由两条直线垂直的条件可得答案.【详解】由题意可知,即故选:A.5、A【解析】由三视图可知该几何体是一个三棱锥,根据等积法求出几何体内切球的半径,再计算内切球的表面积【详解】解:由三视图知该几何体是一个三棱锥,放入棱长为2的正方体中,如图所示:设三棱锥内切球的半径为,则由等体积法得,解得,所以该三棱锥内切球的表面积为故选:A【点睛】本题考查了由三视图求三棱锥内切球表面积的应用问题,属于中档题6、D【解析】将已有数据从小到大排序,根据中位数的定义确定该组数据的中位数.【详解】由题设,将数据从小到大排序可得:,∴中位数为.故选:D.7、C【解析】分析可知,利用双曲线的离心率公式可得出关于的不等式,即可解得实数的取值范围.【详解】由题意有,,则,解得:故选:C.8、A【解析】根据题意可知,当时,根据椭圆离心率公式,即可求出结果;当时,根据双曲线离心率公式,即可求出结果.【详解】因为是两个数1,9的等比中项,所以,所以,当时,圆锥曲线,其离心率为;当时,圆锥曲线,其离心率为;综上,圆锥曲线的离心率为或.故选:A.9、A【解析】根据给定条件构造函数,再探讨其单调性并借助单调性判断作答.【详解】令函数,求导得,当时,,于是得在上单调递减,而,则,即,所以,故选:A10、B【解析】根据等差数列的通项公式的基本量运算求解【详解】设的公差为d,因为,所以,又,所以故选:B11、C【解析】设等差数列的公差为q,根据,,成等比数列,利用等比中项求得公差,再由等差数列前n项和公式求解.【详解】设等差数列的公差为q,因为,且,,成等比数列,所以,解得,所以,所以当12或13时,取得最大值,故选:C12、D【解析】在△中有,再应用正弦定理求,再在△中,即可求塔高.【详解】由题设知:,又,△中,可得,在△中,,则.故选:D二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据题意求出,代入中,再利用裂项相消即可求出答案.【详解】由是等差数列且,可知:,故.,数列的前2021项和为.故答案为:.14、【解析】由题意可得在R上单调递增,再由,利用函数的单调性转化为关于的不等式求解【详解】定义在R上的函数的导函数,在R上单调递增,由,得,即实数的取值范围为故答案为:15、##【解析】根据题中几何关系,求得点坐标,代入椭圆方程求得齐次式,整理化简即可求得离心率.【详解】根据题意,取点为第一象限的点,过点作的垂线,垂足为,如下所示:因为△为等边三角形,又,故可得则点的坐标为,代入椭圆方程可得:,又,整理得:,即,解得(舍)或.故答案为:.16、【解析】取的中点G,连接FG,BG,FB,由正方体的几何特征,易证平面AEC//平面BFG,再根据是侧面内一点(含边界),且平面,得到点P在线段BG上运动,然后在等腰中求解.【详解】如图所示:取的中点G,连接FG,BG,FB,在正方体中,易得又因为平面BFG,平面BFG,所以平面BFG,同理证得平面BFG,又因为,所以平面AEC//平面BFG,因为是侧面内一点(含边界),且平面,所以点P线段BG上运动,如图所示:在等腰中,作,且,所以,设点F到线段BG的距离为d,由等面积法得,解得,所以线段长度的取值范围是,故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)以获胜、以获胜的概率分别是;(2)分给分别元,元.【解析】(1)以获胜、以获胜,则分别要连胜三局,前三局胜两局输一局,第四局胜利;(2)求出若两局之后正常结束比赛时,的胜率,按照胜率分奖金.【小问1详解】设以获胜、以获胜的事件分别为,依题意要想获胜,必须从第一局开始连胜局,;要想获胜,则前局只能胜局,且第局胜利,故概率;【小问2详解】设前两局双方战成后胜,胜的事件分别为.若胜,则可能连胜局,或者局只胜场,第局胜,故概率;由于两人比赛没有和局,获胜的概率为,则获胜的概率为,若胜,则可能连胜局,或者局只胜场,第局胜,故概率.故奖金应分给元,分给元.18、(1)1(2)证明见解析【解析】(1)根据点在椭圆E上建立方程,结合,然后解出方程即可;(2)联立直线与椭圆的方程,表示出直线与,求得交点的坐标,再分别表示出直线和的斜率并作差,通过韦达定理证明直线和的斜率相等即可.【小问1详解】由点在椭圆E上,得:又,即解得:【小问2详解】依题意,得,且直线l与x轴不会平行设直线l的方程为,,由方程组消去x可得:则有:,且直线的方程为,直线的方程为由方程组可得:设直线的斜率分别是,则有:可得:又可得:故【点睛】(1)解答直线与椭圆的题目时,时常把两个曲线的方程联立,消去x(或y)建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系(2)涉及到直线方程时,务必考虑全面,不要忽略直线斜率为或不存在等特殊情形请考生在第22-23题中任选一题作答,如果多做,则按所做的第一题计分19、(1)证明见解析,;(2);(3).【解析】(1)由已知等式变形可得,利用等比数列的定义可证得结论成立,确定等比数列的首项和公比,可求得数列的通项公式;(2)求得,然后分、两种情况讨论,结合裂项相消法可得出的表达式;(3)求得,分、、三种情况讨论,利用奇数与偶数的性质以及整数的性质可求得、的值,综合可得出结论.【小问1详解】解:由可得,,则,,以此类推可知,对任意的,,则,故数列为等比数列,且该数列的首项为,公比为,故,可得.【小问2详解】解:由(1)知,所以,所以,当n=1时,,当时,.因为满足,所以.【小问3详解】解:,、、这三项经适当排序后能构成等差数列,①若,则,所以,,又,所以,,则;②若,则,则,左边为偶数,右边为奇数,所以,②不成立;③若,同②可知③也不成立综合①②③得,20、(1)(2)【解析】(1)根据正弦定理及题中条件,可得,化简整理,即可求解(2)由的面积为4,结合(1)中结论,可得,结合余弦定理,可得,从而可求的周长【详解】解:(1)由及正弦定理得,,又,∴,∴,∴.(2)∵的面积为,∴.由余弦定理得,∴.故的周长为.【点睛】本题考查正弦定理应用,余弦定理解三角形,三角形面积公式,考查计算化简的能力,属基础题21、(1)列联表见解析,有99%的把握判断监管力度与食品质量有关联;(2)X的分布列见解析,X的期望为【解析】(1)根据给定条件完善列联表,再计算的观测值并结合给定数据即可作答.(2)求出X的可能值及各个值对应的概率列出X的分布列,再计算期望作答.【小问1详解】对监管力度满意的有,对食品质量满意的有,列联表如下:对监督力度满意对监督力度不满意总计对食品质量满意8040120对食品质量不满意701080总计15050200则的观测值为:,所以有99%的把握判断监管力度与食品质量有关联.【小问2详解】由(1)及已知得,X的所有可能值为:0,1,2,3,,,,,X的分布列为:X0123PX的期望为:.【点睛】易错点睛:独立性检验得出的结论是带有概率性质的,不可对某个问题下
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年高职国际航运业务管理(航运业务操作)试题及答案
- 2025年高职航空机电设备维修(航空设备维护)试题及答案
- 2025年高职(食品生物技术)食品酶制剂应用专项测试试题及答案
- 2025年高职生态保护运营(运营技术)试题及答案
- 2025年大学戏剧影视表演(表演基础)试题及答案
- 2025年高职(智能制造装备技术)装备维护阶段测试题及答案
- 2025年高职(给排水工程技术专业)管道维修试题及答案
- 2025年大学休闲体育(康乐体育)试题及答案
- 2025年高职地理教育(地理教学设计)试题及答案
- 2025年高职(园林技术)绿化工程施工实训试题及答案
- 未来五年养殖淡水鳙鱼(胖头鱼)企业县域市场拓展与下沉战略分析研究报告
- 2026年宁夏贺兰工业园区管委会工作人员社会化公开招聘备考题库参考答案详解
- 癌痛患者心理支持策略
- 2025年12月份四川成都市第八人民医院编外招聘9人笔试参考题库及答案解析
- 25秋二上语文期末押题卷5套
- 达人分销合同范本
- 检修车间定置管理制度(3篇)
- 乘用车内部凸出物法规培训
- 妇科肿瘤保留生育功能治疗策略
- 建筑工程施工管理论文2025年
- 铁路系统QC国优成果-定稿减少信号电缆过渡施工安全隐患
评论
0/150
提交评论