版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省邯郸市永年区第二中学2026届高一数学第一学期期末监测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若,,,则a,b,c的大小关系是A. B.C. D.2.设,则的值为A. B.C. D.3.在下列命题中,不是公理的是A.平行于同一条直线的两条直线互相平行B.如果一条直线上的两点在一个平面内,那么这条直线在此平面内C.空间中,如果两个角的两边分别对应平行,那么这两角相等或互补D.如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线4.在四面体的四个面中,是直角三角形的至多有A.0个 B.2个C.3个 D.4个5.已知函数,若实数满足,则实数的取值范围是()A. B.C. D.6.两直线2x+3y-k=0和x-ky+12=0的交点在y轴上,那么k的值是A.-24 B.6C.±6 D.±247.已知函数是定义在上的奇函数,在区间上单调递增.若实数满足,则实数的取值范围是A B.C. D.8.已知,都为单位向量,且,夹角的余弦值是,则A. B.C. D.9.中国传统文化中很多内容体现了数学的“对称美”.如图所示的太极图是由黑白两个鱼形纹组成的圆形图案,充分体现了相互变化、对称统一的形式美、和谐美.给出定义:能够将圆(为坐标原点)的周长和面积同时平分的函数称为这个圆的“优美函数”.给出下列命题:①对于任意一个圆,其“优美函数”有无数个;②函数可以是某个圆的“优美函数”;③正弦函数可以同时是无数个圆的“优美函数”;④函数是“优美函数”的充要条件为函数的图象是中心对称图形A.①④ B.①③④C.②③ D.①③10.下列函数中,在区间上是减函数的是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.设函数;若方程有且仅有1个实数根,则实数b的取值范围是__________12.在直角坐标系中,直线的倾斜角________13.已知函数,则=____________14.如图,在长方体ABCD—中,AB=3cm,AD=2cm,,则三棱锥的体积___________.15.命题的否定是__________16.若函数在单调递增,则实数的取值范围为________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知定义域为的函数是奇函数.(1)求的解析式;(2)若恒成立,求实数的取值范围.18.已知函数(,且).(1)求的值,并证明不是奇函数;(2)若,其中e是自然对数的底数,证明:存在不为0的零点,并求.注:设x为实数,表示不超过x的最大整数.参考数据:,,,.19.如图,在直三棱柱ABC-A1B1C1中,AC=BC=CC1,AC⊥BC,点D是AB的中点(1)求证:CD⊥平面A1ABB1;(2)求证:AC1∥平面CDB120.某工厂某种航空产品的年固定成本为万元,每生产件,需另投入成本为,当年产量不足件时,(万元).当年产量不小于件时,(万元).每件商品售价为万元.通过市场分析,该厂生产的商品能全部售完.(1)写出年利润(万元)关于年产量(件)的函数解析式;(2)年产量为多少件时,该厂在这一商品的生产中所获利润最大?21.已知(其中a为常数,且)是偶函数.(1)求实数m的值;(2)证明方程有且仅有一个实数根,若这个唯一的实数根为,试比较与的大小.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】由题意,根据实数指数函数性质,可得,根据对数的运算性质,可得,即可得到答案.【详解】由题意,根据实数指数函数的性质,可得,根据对数的运算性质,可得;故选C【点睛】本题主要考查了指数函数与对数函数的运算性质的应用,其中解答中合理运用指数函数和对数函数的运算性质,合理得到的取值范围是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.2、A【解析】先利用诱导公式以及同角的三角函数关系化简,再根据特殊角的三角函数值代值计算【详解】解:由题意得,,则,故选:A【点睛】本题主要考查诱导公式和特殊角的三角函数值,考查同角的平方关系,属于基础题3、C【解析】A,B,D分别为公理4,公理1,公理2,C为角平行性质,选C4、D【解析】作出图形,能够做到PA与AB,AC垂直,BC与BA,BP垂直,得解【详解】如图,PA⊥平面ABC,CB⊥AB,则CB⊥BP,故四个面均为直角三角形故选D【点睛】本题考查了四面体的结构与特征,考查了线面的垂直关系,属于基础题.5、D【解析】由题可得函数关于对称,且在上单调递增,在上单调递减,进而可得,即得.【详解】∵函数,定义域为,又,所以函数关于对称,当时,单调递增,故函数单调递增,∴函数在上单调递增,在上单调递减,由可得,,解得,且.故选:D.6、C【解析】两直线2x+3y-k=0和x+ky-12=0的交点在y轴上,令x=0,可得,解得k即可【详解】∵两直线2x+3y-k=0和x+ky-12=0的交点在y轴上,令x=0,可得,解得k=±6故选C【点睛】本题考查了两条直线的交点坐标,考查了推理能力与计算能力,属于基础题7、C【解析】是定义在上的奇函数,在上单调递增,解得故选8、D【解析】利用,结合数量积的定义可求得的平方的值,再开方即可【详解】依题意,,故选D【点睛】本题考查了平面向量数量积的性质及其运算,属基础题.向量数量积的运算主要掌握两点:一是数量积的基本公式;二是向量的平方等于向量模的平方.9、D【解析】根据定义分析,优美函数具备的特征是,函数关于圆心(即坐标原点)呈中心对称.【详解】对①,中心对称图形有无数个,①正确对②,函数是偶函数,不关于原点成中心对称.②错误对③,正弦函数关于原点成中心对称图形,③正确.对④,充要条件应该是关于原点成中心对称图形,④错误故选D【点睛】仔细阅读新定义问题,理解定义中优美函数的含义,找到中心对称图形,即可判断各项正误.10、D【解析】根据二次函数,幂函数,指数函数,一次函数的单调性即可得出答案.【详解】解:对于A,函数在区间上是增函数,故A不符合题意;对于B,函数在区间上是增函数,故B不符合题意;对于C,函数在区间上是增函数,故C不符合题意;对于D,函数在区间上是减函数,故D符合题意.故选:D.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据分段函数的解析式作出函数图象,将方程有且仅有1个实数根转化为函数与直线有一个交点,然后数形结合即可求解.【详解】作出函数的图象,如图:结合图象可得:,故答案为:.12、##30°【解析】由直线方程得斜率,由斜率得倾斜角【详解】试题分析:直线化成,可知,而,故故答案为:13、【解析】由函数解析式,先求得,再求得代入即得解.【详解】函数,则==,故答案为.【点睛】本题考查函数值的求法,属于基础题.14、1【解析】根据题意,求得棱锥的底面积和高,由体积公式即可求得结果.【详解】根据题意可得,平面,故可得,又因为,故可得.故答案为:.【点睛】本题考查三棱锥体积的求解,涉及转换棱锥的顶点,属基础题.15、;【解析】根据存在量词的命题的否定为全称量词命题即可得解;【详解】解:因为命题“”为存在量词命题,其否定为全称量词命题为故答案为:16、【解析】根据复合函数单调性性质将问题转化二次函数单调性问题,注意真数大于0.【详解】令,则,因为为减函数,所以在上单调递增等价于在上单调递减,且,即,解得.故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)由是奇函数可得,从而可求得值,即可求得的解析式;(2)由复合函数的单调性判断在上单调递减,结合函数的奇偶性将不等式恒成立问题转化为,令,利用二次函数的性质求得的最大值,即可求得的取值范围【详解】(1)因为函数为奇函数,所以,即,所以,所以,可得,函数.(2)由(1)知所以在上单调递减.由,得,因为函数是奇函数,所以,所以,整理得,设,,则,当时,有最大值,最大值为.所以,即.【点睛】方法点睛:已知函数的奇偶性求参数,主要方法有两个,一是利用:(1)奇函数由恒成立求解,(2)偶函数由恒成立求解;二是利用特殊值:奇函数一般由求解,偶函数一般由求解,用特殊法求解参数后,一定要注意验证奇偶性.18、(1),证明见解析(2)证明见解析,【解析】(1)利用,可证明;(2)利用零点的判定方法证明(5),可求得【小问1详解】证明:,,,,不是奇函数;【小问2详解】,,(5),(5),存在不为0的零点19、(1)见解析(2)见解析【解析】(1)欲证CD⊥平面A1ABB1,可先证平面ABC⊥平面A1ABB1,CD⊥AB,面ABC∩面A1ABB1=AB,满足根据面面垂直的性质;(2)欲证AC1∥平面CDB1,根据直线与平面平行的判定定理可知只需证AC1与平面CDB1内一直线平行,连接BC1,设BC1与B1C的交点为E,连接DE.根据中位线可知DE∥AC1,DE⊂平面CDB1,AC1⊄平面CDB1,满足定理所需条件【详解】(1)证明:∵ABC-A1B1C1是直三棱柱,∴平面ABC⊥平面A1ABB1∵AC=BC,点D是AB的中点,∴CD⊥AB,面ABC∩面A1ABB1=AB∴CD⊥平面A1ABB1(2)证明:连接BC1,设BC1与B1C的交点为E,连接DE∵D是AB的中点,E是BC1的中点,∴DE∥AC1.∵DE⊂平面CDB1,AC1⊄平面CDB1,∴AC1∥平面CDB1【点睛】本题考查直线与平面平行的判定,直线与平面垂直的判定,考查学生空间想象能力,逻辑思维能力,是中档题20、(1);(2)年产量为件时,利润最大为万元.【解析】(1)实际应用题首先要根据题意,建立数学模型,即建立函数关系式,这里,要用分类讨论的思想,建立分段函数表达式;(2)根据建立的函数关系解模,即运用数学知识求函数的最值,这里第一段,运用的是二次函数求最值,而第二段,则可运用基本不等式求最值,然后再作比较,确定最终的结果,最后要回到实际问题作答.试题解析:解:(1)当时,;当时,,所以.(2)当时,此时,当时,取得最大值万元.当时,此时,当时,即时,取得最大值万元,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 合成碳膜电位器制造工班组评比测试考核试卷含答案
- 麻纤维脱胶工岗前创新方法考核试卷含答案
- 电力电容器卷制工成果转化模拟考核试卷含答案
- (一模)株洲市2026届高三年级教学质量统一检测历史试卷(含答案详解)
- 学生请假条 模板
- 2025年BYDBYE并条自调匀整系统项目发展计划
- 2025年商业照明灯具项目合作计划书
- 2025年放射性核素发生器项目发展计划
- 2021年海南省中考生物真题(含答案)
- 2025年离合器压盘项目合作计划书
- 三峡集团2025招聘笔试真题及答案解析
- 尾矿综合利用技术在生态环境保护中的应用与经济效益分析报告
- 施工现场火灾事故预防及应急措施
- 污水处理站施工安全管理方案
- 2025年苏州市事业单位招聘考试教师招聘体育学科专业知识试卷
- 加油站投诉处理培训课件
- 学堂在线 雨课堂 学堂云 唐宋词鉴赏 期末考试答案
- 2025至2030中国辐射监测仪表市场投资效益与企业经营发展分析报告
- 工程力学(本)2024国开机考答案
- 产品认证标志管理制度
- GB/T 31907-2025服装测量方法
评论
0/150
提交评论