2026届山西省山大附中数学高二上期末经典模拟试题含解析_第1页
2026届山西省山大附中数学高二上期末经典模拟试题含解析_第2页
2026届山西省山大附中数学高二上期末经典模拟试题含解析_第3页
2026届山西省山大附中数学高二上期末经典模拟试题含解析_第4页
2026届山西省山大附中数学高二上期末经典模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届山西省山大附中数学高二上期末经典模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.古希腊数学家阿波罗尼斯的著作《圆锥曲线论》是古代世界光辉的科学成果,它将圆锥曲线的性质网罗殆尽,几乎使后人没有插足的余地.他证明过这样一个命题:平面内与两定点距离的比为常数且的点的轨迹是圆,后人将之称为阿波罗尼斯圆.现有椭圆为椭圆长轴的端点,为椭圆短轴的端点,,分别为椭圆的左右焦点,动点满足面积的最大值为面积的最小值为,则椭圆的离心率为()A. B.C. D.2.在中,角、、的对边分别是、、,若.则的大小为()A. B.C. D.3.已知圆,圆,M,N分别是圆上的动点,P为x轴上的动点,则以的最小值为()A B.C. D.4.已知椭圆+=1(a>b>0)的右焦点为F(3,0),过点F的直线交椭圆于A、B两点.若AB的中点坐标为(1,-1),则E的方程为A.+=1 B.+=1C.+=1 D.+=15.直线分别交坐标轴于A,B两点,O为坐标原点,三角形OAB的内切圆上有动点P,则的最小值为()A.16 B.18C.20 D.226.已知圆和圆恰有三条公共切线,则的最小值为()A.6 B.36C.10 D.7.函数的导函数为,对任意,都有成立,若,则满足不等式的的取值范围是()A. B.C. D.8.如图,在平行六面体中,,则与向量相等的是()A. B.C. D.9.某考点配备的信号检测设备的监测范围是半径为100米的圆形区域,一名工作人员持手机以每分钟50米的速度从设备正东方向米的处出发,沿处西北方向走向位于设备正北方向的处,则这名工作人员被持续监测的时长为()A.1分钟 B.分钟C.2分钟 D.分钟10.双曲线的渐近线的斜率是()A.1 B.C. D.11.已知条件:,条件:表示一个椭圆,则是的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件12.已知等差数列满足,则等于()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若函数是上的增函数,则实数的取值范围是__________.14.定义方程的实数根叫做函数的“新驻点”.(1)设,则在上的“新驻点”为___________;(2)如果函数与的“新驻点”分别为、,那么和的大小关系是___________.15.如图,正方形ABCD的边长为8,取正方形ABCD各边的中点E,F,G,H,作第2个正方形EFGH,然后再取正方形EFGH各边的中点I,J,K,L,作第3个正方形IJKL.依此方法一直继续下去.①从正方形ABCD开始,第7个正方形的边长为___;②如果这个作图过程可以一直继续下去,那么作到第n个正方形,这n个正方形的面积之和为___.16.过椭圆的一个焦点的弦与另一个焦点围成的的周长是______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)平面直角坐标系xOy中,点,,点M满足.记M的轨迹为C.(1)说明C是什么曲线,并求C的方程;(2)已知经过的直线l与C交于A,B两点,若,求.18.(12分)已知向量,,且.(1)求满足上述条件的点M(x,y)的轨迹C的方程;(2)设曲线C与直线y=kx+m(k≠0)相交于不同的两点P,Q,点A(0,1),当|AP|=|AQ|时,求实数m的取值范围.19.(12分)已知两条直线,.设为实数,分别根据下列条件求的值.(1);(2)直线在轴、轴上截距之和等于.20.(12分)在数列中,,点在直线上.(1)求的通项公式;(2)记的前项和为,且,求数列的前项和.21.(12分)已知各项均为正数的等比数列{}的前4项和为15,且.(1)求{}的通项公式;(2)若,记数列{}前n项和为,求.22.(10分)“双十一”已经成为网民们的网购狂欢节,某电子商务平台对某市的网民在今年“双十一”的网购情况进行摸底调查,用随机抽样的方法抽取了100人,其消费金额(百元)的频率分布直方图如图1所示:(1)利用图1,求网民消费金额的平均值和中位数;(2)把下表中空格里的数填上,能否有的把握认为网购消费与性别有关.男女合计30合计45附表:P(χ2≥k0)0.100.050.012.7063.8416.635参考公式:χ2=.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】由题可得动点M的轨迹方程,可得,,即求.【详解】设,,由,可得=2,化简得.∵△MAB面积的最大值为面积的最小值为,∴,,∴,即,∴故选:A2、B【解析】利用余弦定理结合角的范围可求得角的值,再利用三角形的内角和定理可求得的值.【详解】因为,则,则,由余弦定理可得,因为,则,故.故选:B.3、A【解析】求出圆关于轴的对称圆的圆心坐标,以及半径,然后求解圆与圆的圆心距减去两个圆的半径和,即可求出的最小值.【详解】圆关于轴对称圆的圆心坐标,半径为1,圆的圆心坐标为,半径为3,易知,当三点共线时,取得最小值,的最小值为圆与圆的圆心距减去两个圆的半径和,即:.故选:A.注意:9至12题为多选题4、D【解析】设、,所以,运用点差法,所以直线的斜率为,设直线方程为,联立直线与椭圆的方程,所以;又因为,解得.【考点定位】本题考查直线与圆锥曲线的关系,考查学生的化归与转化能力.5、B【解析】由题意,求出内切圆的半径和圆心坐标,设,则,由表示内切圆上的动点P到定点的距离的平方,从而即可求解最小值.【详解】解:因为直线分别交坐标轴于A,B两点,所以设,则,因为,所以三角形OAB的内切圆半径,内切圆圆心为,所以内切圆的方程为,设,则,因为表示内切圆上的动点P到定点的距离的平方,且在内切圆内,所以,所以,,即的最小值为18,故选:B.6、B【解析】由公切线条数得两圆外切,由此可得的关系,从而点在以原点为圆心,4为半径的圆上,记,由求得的最小值,平方后即得结论【详解】圆标准方程为,,半径为,圆标准方程为,,半径为,两圆有三条公切线,则两圆外切,所以,即,点在以原点为圆心,4为半径的圆上,记,,所以,所以的最小值为故选:B7、C【解析】构造函数,利用导数分析函数的单调性,将所求不等式变形为,结合函数的单调性即可得解.【详解】对任意,都有成立,即令,则,所以函数上单调递增不等式即,即因为,所以所以,,解得,所以不等式的解集为故选:C.8、A【解析】根据空间向量的线性运算法则——三角形法,准确运算,即可求解.【详解】由题意,在平行六面体中,,可得.故选:A.9、C【解析】以设备的位置为坐标原点,其正东方向为轴正方向,正北方向为轴正方向建立平面直角坐标系,求得直线和圆的方程,利用点到直线的距离公式和圆的弦长公式,求得的长,进而求得持续监测的时长.【详解】以设备的位置为坐标原点,其正东方向为轴正方向,正北方向为轴正方向建立平面直角坐标系,如图所示,则,,可得,圆记从处开始被监测,到处监测结束,因为到的距离为米,所以米,故监测时长为分钟故选:C.10、B【解析】由双曲线的渐近线方程为:,化简即可得到答案.【详解】双曲线的渐近线方程为:,即,渐近线的斜率是.故选:B11、B【解析】根据曲线方程,结合充分、必要性的定义判断题设条件间的关系.【详解】由,若,则表示一个圆,充分性不成立;而表示一个椭圆,则成立,必要性成立.所以是的必要不充分条件.故选:B12、A【解析】利用等差中项求出的值,进而可求得的值.【详解】因为得,因此,.故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由题意知在上恒成立,从而结合一元二次不等式恒成立问题,可列出关于的不等式,进而可求其取值范围.【详解】解:由题意知,知在上恒成立,则只需,解得.故答案为:.【点睛】本题考查了不等式恒成立问题,考查了运用导数探究函数的单调性.一般地,由增函数可得导数不小于零,由减函数可得导数不大于零.对于一元二次不等式在上恒成立问题,如若在上恒成立,可得;若在上恒成立,可得.14、①.②.【解析】(1)根据“新驻点”的定义求得,结合可得出结果;(2)求出的值,利用零点存在定理判断所在的区间,进而可得出与的大小关系.详解】(1),,根据“新驻点”的定义得,即,可得,,解得,所以,函数在上的“新驻点”为;(2),则,根据“新驻点”的定义得,即.,则,由“新驻点”的定义得,即,构造函数,则函数在定义域上为增函数,,,,由零点存在定理可知,,.故答案为:(1);(2).【点睛】本题考查导数的计算,是新定义的题型,关键是理解“新驻点”的定义.15、①.1②.【解析】根据题意,正方形边长成等比数列,正方形的面积等于边长的平方可得,然后根据等比数列的通项公式及等比数列的前n项和的公式即可求解.【详解】设第n个正方形的边长为,第n个正方形的面积为,则第n个正方形的对角线长为,所以第n+1个正方形的边长为,,∴数列{}是首项为,公比为的等比数列,,∴,即第7个正方形的边长为1;∴数列{}是首项为,公比为的等比数列,故答案为:1;.16、【解析】求得,利用椭圆的定义可得出的周长.【详解】在椭圆中,,由题意可知,的周长为.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)C是以点,为左右焦点的椭圆,(2)【解析】(1)根据椭圆的定义即可得到答案.(2)当垂直于轴时,,舍去.当不垂直于轴时,可设,再根据题意结合韦达定理求解即可.【小问1详解】因为,,所以C是以点,为左右焦点的椭圆.于是,,故,因此C的方程为.【小问2详解】当垂直于轴时,,,舍去.当不垂直于轴时,可设,代入可得.因为,设,,则,.因为,所以.同理.因此.由可得,,于是.根据椭圆定义可知,于是.18、(1)+y2=1;(2).【解析】(1)应用向量垂直的坐标表示得x2+3y2=3,即可写出M的轨迹C的方程;(2)由直线与曲线C交于不同的两点P(x1,y1),Q(x2,y2),设直线y=kx+m(k≠0),联立方程整理所得方程有,且由根与系数关系用m,k表示x1+x2,x1x2,若N为PQ的中点结合|AP|=|AQ|知PQ⊥AN可得m、k的等量关系,结合即可求m的范围.【详解】(1)∵,即,∴,即有x2+3y2=3,即点M(x,y)的轨迹C的方程为+y2=1.(2)由得(1+3k2)x2+6kmx+3(m2-1)=0.∵曲线C与直线y=kx+m(k≠0)相交于不同的两点,∴Δ=(6km)2-12(1+3k2)(m2-1)=12(3k2-m2+1)>0,即3k2-m2+1>0①,且x1+x2=,x1x2=.设P(x1,y1),Q(x2,y2),线段PQ的中点N(x0,y0),则.∵|AP|=|AQ|,即知PQ⊥AN,设kAN表示直线AN的斜率,又k≠0,∴kANk=-1.即·k=-1,得3k2=2m-1②,而3k2>0,有m>.将②代入①得2m1m2+1>0,即2m<0,解得0<m<2,∴m的取值范围为.【点睛】思路点睛:1、由向量垂直,结合其坐标表示得到关于x,y的方程,写出曲线C的标准方程即可.2、由直线与曲线C相交,联立方程有,由|AP|=|AQ|得直线的垂直关系,即斜率之积为-1,进而可求参数的范围.19、(1);(2).【解析】(1)由两直线平行可得出关于的等式,求出的值,再代入两直线方程,验证两直线是否平行,由此可得出结果;(2)分析可知,求出直线在轴、轴上的截距,结合已知条件可得出关于的等式,即可解得的值.【小问1详解】解:由,则,即,解得或.当时,,,此时;当时,,,此时重合,不合乎题意.综上所述,;【小问2详解】解:对于直线,由已知可得,则,令,得;令,得.因为直线在轴、轴上截距之和等于,即,解得.20、(1)(2)【解析】(1)由定义证明数列是等差数列,再由得出通项公式;(2)先由求和公式得出,再由裂项相消求和法求和即可.【小问1详解】由题意可知,,所以数列是公差的等差数列又,所以,故小问2详解】,则故21、(1)(2)【解析】(1)设正项的等比数列的公比为,根据题意列出方程组,求得的值,即可求得数列的通项公式;(2)由,结合乘公比错位相减求和,即可求解.小问1详解】解:设正项的等比数列的公比为,显然不为1,因为等比数列前4项和为且,可得,解得,所以数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论