版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届天津市西青区数学高三第一学期期末联考模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设为坐标原点,是以为焦点的抛物线上任意一点,是线段上的点,且,则直线的斜率的最大值为()A.1 B. C. D.2.2020年是脱贫攻坚决战决胜之年,某市为早日实现目标,现将甲、乙、丙、丁4名干部派遺到、、三个贫困县扶贫,要求每个贫困县至少分到一人,则甲被派遣到县的分法有()A.6种 B.12种 C.24种 D.36种3.已知函数,的图象与直线的两个相邻交点的距离等于,则的一条对称轴是()A. B. C. D.4.已知复数满足(是虚数单位),则=()A. B. C. D.5.已知函数,,若总有恒成立.记的最小值为,则的最大值为()A.1 B. C. D.6.如图,用一边长为的正方形硬纸,按各边中点垂直折起四个小三角形,做成一个蛋巢,将体积为的鸡蛋(视为球体)放入其中,蛋巢形状保持不变,则鸡蛋中心(球心)与蛋巢底面的距离为()A. B. C. D.7.已知函数.下列命题:①函数的图象关于原点对称;②函数是周期函数;③当时,函数取最大值;④函数的图象与函数的图象没有公共点,其中正确命题的序号是()A.①④ B.②③ C.①③④ D.①②④8.已知是边长为的正三角形,若,则A. B.C. D.9.已知集合,则全集则下列结论正确的是()A. B. C. D.10.的展开式中有理项有()A.项 B.项 C.项 D.项11.已知双曲线的一条渐近线方程为,则双曲线的离心率为()A. B. C. D.12.已知函数,其中,若恒成立,则函数的单调递增区间为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知是定义在上的奇函数,当时,,则不等式的解集用区间表示为__________.14.已知实数a,b,c满足,则的最小值是______.15.已知实数满足(为虚数单位),则的值为_______.16.记复数z=a+bi(i为虚数单位)的共轭复数为,已知z=2+i,则_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数和的图象关于原点对称,且.(1)解关于的不等式;(2)如果对,不等式恒成立,求实数的取值范围.18.(12分)已知x,y,z均为正数.(1)若xy<1,证明:|x+z|⋅|y+z|>4xyz;(2)若=,求2xy⋅2yz⋅2xz的最小值.19.(12分)手工艺是一种生活态度和对传统的坚持,在我国有很多手工艺品制作村落,村民的手工技艺世代相传,有些村落制造出的手工艺品不仅全国闻名,还大量远销海外.近年来某手工艺品村制作的手工艺品在国外备受欢迎,该村村民成立了手工艺品外销合作社,为严把质量关,合作社对村民制作的每件手工艺品都请3位行家进行质量把关,质量把关程序如下:(i)若一件手工艺品3位行家都认为质量过关,则该手工艺品质量为A级;(ii)若仅有1位行家认为质量不过关,再由另外2位行家进行第二次质量把关,若第二次质量把关这2位行家都认为质量过关,则该手工艺品质量为B级,若第二次质量把关这2位行家中有1位或2位认为质量不过关,则该手工艺品质量为C级;(iii)若有2位或3位行家认为质量不过关,则该手工艺品质量为D级.已知每一次质量把关中一件手工艺品被1位行家认为质量不过关的概率为,且各手工艺品质量是否过关相互独立.(1)求一件手工艺品质量为B级的概率;(2)若一件手工艺品质量为A,B,C级均可外销,且利润分别为900元,600元,300元,质量为D级不能外销,利润记为100元.①求10件手工艺品中不能外销的手工艺品最有可能是多少件;②记1件手工艺品的利润为X元,求X的分布列与期望.20.(12分)设函数,,.(1)求函数的单调区间;(2)若函数有两个零点,().(i)求的取值范围;(ii)求证:随着的增大而增大.21.(12分)已知,函数.(Ⅰ)若在区间上单调递增,求的值;(Ⅱ)若恒成立,求的最大值.(参考数据:)22.(10分)如图,在四棱锥PABCD中,PA⊥平面ABCD,∠ABC=∠BAD=90°,AD=AP=4,AB=BC=2,M为PC的中点.(1)求异面直线AP,BM所成角的余弦值;(2)点N在线段AD上,且AN=λ,若直线MN与平面PBC所成角的正弦值为,求λ的值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】
设,因为,得到,利用直线的斜率公式,得到,结合基本不等式,即可求解.【详解】由题意,抛物线的焦点坐标为,设,因为,即线段的中点,所以,所以直线的斜率,当且仅当,即时等号成立,所以直线的斜率的最大值为1.故选:A.【点睛】本题主要考查了抛物线的方程及其应用,直线的斜率公式,以及利用基本不等式求最值的应用,着重考查了推理与运算能力,属于中档试题.2、B【解析】
分成甲单独到县和甲与另一人一同到县两种情况进行分类讨论,由此求得甲被派遣到县的分法数.【详解】如果甲单独到县,则方法数有种.如果甲与另一人一同到县,则方法数有种.故总的方法数有种.故选:B【点睛】本小题主要考查简答排列组合的计算,属于基础题.3、D【解析】
由题,得,由的图象与直线的两个相邻交点的距离等于,可得最小正周期,从而求得,得到函数的解析式,又因为当时,,由此即可得到本题答案.【详解】由题,得,因为的图象与直线的两个相邻交点的距离等于,所以函数的最小正周期,则,所以,当时,,所以是函数的一条对称轴,故选:D【点睛】本题主要考查利用和差公式恒等变形,以及考查三角函数的周期性和对称性.4、A【解析】
把已知等式变形,再由复数代数形式的乘除运算化简得答案.【详解】解:由,得,.故选.【点睛】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.5、C【解析】
根据总有恒成立可构造函数,求导后分情况讨论的最大值可得最大值最大值,即.根据题意化简可得,求得,再换元求导分析最大值即可.【详解】由题,总有即恒成立.设,则的最大值小于等于0.又,若则,在上单调递增,无最大值.若,则当时,,在上单调递减,当时,,在上单调递增.故在处取得最大值.故,化简得.故,令,可令,故,当时,,在递减;当时,,在递增.故在处取得极大值,为.故的最大值为.故选:C【点睛】本题主要考查了根据导数求解函数的最值问题,需要根据题意分析导数中参数的范围,再分析函数的最值,进而求导构造函数求解的最大值.属于难题.6、D【解析】
先求出球心到四个支点所在球的小圆的距离,再加上侧面三角形的高,即可求解.【详解】设四个支点所在球的小圆的圆心为,球心为,由题意,球的体积为,即可得球的半径为1,又由边长为的正方形硬纸,可得圆的半径为,利用球的性质可得,又由到底面的距离即为侧面三角形的高,其中高为,所以球心到底面的距离为.故选:D.【点睛】本题主要考查了空间几何体的结构特征,以及球的性质的综合应用,着重考查了数形结合思想,以及推理与计算能力,属于基础题.7、A【解析】
根据奇偶性的定义可判断出①正确;由周期函数特点知②错误;函数定义域为,最值点即为极值点,由知③错误;令,在和两种情况下知均无零点,知④正确.【详解】由题意得:定义域为,,为奇函数,图象关于原点对称,①正确;为周期函数,不是周期函数,不是周期函数,②错误;,,不是最值,③错误;令,当时,,,,此时与无交点;当时,,,,此时与无交点;综上所述:与无交点,④正确.故选:.【点睛】本题考查函数与导数知识的综合应用,涉及到函数奇偶性和周期性的判断、函数最值的判断、两函数交点个数问题的求解;本题综合性较强,对于学生的分析和推理能力有较高要求.8、A【解析】
由可得,因为是边长为的正三角形,所以,故选A.9、D【解析】
化简集合,根据对数函数的性质,化简集合,按照集合交集、并集、补集定义,逐项判断,即可求出结论.【详解】由,则,故,由知,,因此,,,,故选:D【点睛】本题考查集合运算以及集合间的关系,求解不等式是解题的关键,属于基础题.10、B【解析】
由二项展开式定理求出通项,求出的指数为整数时的个数,即可求解.【详解】,,当,,,时,为有理项,共项.故选:B.【点睛】本题考查二项展开式项的特征,熟练掌握二项展开式的通项公式是解题的关键,属于基础题.11、B【解析】
由题意得出的值,进而利用离心率公式可求得该双曲线的离心率.【详解】双曲线的渐近线方程为,由题意可得,因此,该双曲线的离心率为.故选:B.【点睛】本题考查利用双曲线的渐近线方程求双曲线的离心率,利用公式计算较为方便,考查计算能力,属于基础题.12、A【解析】
,从而可得,,再解不等式即可.【详解】由已知,,所以,,由,解得,.故选:A.【点睛】本题考查求正弦型函数的单调区间,涉及到恒成立问题,考查学生转化与化归的思想,是一道中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】设,则,由题意可得故当时,由不等式,可得,或求得,或故答案为(14、【解析】
先分离出,应用基本不等式转化为关于c的二次函数,进而求出最小值.【详解】解:若取最小值,则异号,,根据题意得:,又由,即有,则,即的最小值为,故答案为:【点睛】本题考查了基本不等式以及二次函数配方求最值,属于中档题.15、【解析】
由虚数单位的性质结合复数相等的条件列式求得,的值,则答案可求.【详解】解:由,,,所以,得,..故答案为:.【点睛】本题考查复数代数形式的乘除运算,考查虚数单位的性质,属于基础题.16、3﹣4i【解析】
计算得到z2=(2+i)2=3+4i,再计算得到答案.【详解】∵z=2+i,∴z2=(2+i)2=3+4i,则.故答案为:3﹣4i.【点睛】本题考查了复数的运算,共轭复数,意在考查学生的计算能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】试题分析:(1)由函数和的图象关于原点对称可得的表达式,再去掉绝对值即可解不等式;(2)对,不等式成立等价于,去绝对值得不等式组,即可求得实数的取值范围.试题解析:(1)∵函数和的图象关于原点对称,∴,∴原不等式可化为,即或,解得不等式的解集为;(2)不等式可化为:,即,即,则只需,解得,的取值范围是.18、(1)证明见解析;(2)最小值为1【解析】
(1)利用基本不等式可得,再根据0<xy<1时,即可证明|x+z|⋅|y+z|>4xyz.(2)由=,得,然后利用基本不等式即可得到xy+yz+xz≥3,从而求出2xy⋅2yz⋅2xz的最小值.【详解】(1)证明:∵x,y,z均为正数,∴|x+z|⋅|y+z|=(x+z)(y+z)≥=,当且仅当x=y=z时取等号.又∵0<xy<1,∴,∴|x+z|⋅|y+z|>4xyz;(2)∵=,即.∵,,,当且仅当x=y=z=1时取等号,∴,∴xy+yz+xz≥3,∴2xy⋅2yz⋅2xz=2xy+yz+xz≥1,∴2xy⋅2yz⋅2xz的最小值为1.【点睛】本题考查了利用综合法证明不等式和利用基本不等式求最值,考查了转化思想和运算能力,属中档题.19、(1)(2)①2②期望值为X900600300100P【解析】
(1)一件手工艺品质量为B级的概率为.(2)①由题意可得一件手工艺品质量为D级的概率为,设10件手工艺品中不能外销的手工艺品可能是件,则,则,.由得,所以当时,,即,由得,所以当时,,所以当时,最大,即10件手工艺品中不能外销的手工艺品最有可能是2件.②由上可得一件手工艺品质量为A级的概率为,一件手工艺品质量为B级的概率为,一件手工艺品质量为C级的概率为,一件手工艺品质量为D级的概率为,所以X的分布列为X900600300100P则期望为.20、(1)见解析;(2)(i)(ii)证明见解析【解析】
(1)求出导函数,分类讨论即可求解;(2)(i)结合(1)的单调性分析函数有两个零点求解参数取值范围;(ii)设,通过转化,讨论函数的单调性得证.【详解】(1)因为,所以当时,在上恒成立,所以在上单调递增,当时,的解集为,的解集为,所以的单调增区间为,的单调减区间为;(2)(i)由(1)可知,当时,在上单调递增,至多一个零点,不符题意,当时,因为有两个零点,所以,解得,因为,且,所以存在,使得,又因为,设,则,所以单调递增,所以,即,因为,所以存在,使得,综上,;(ii)因为,所以,因为,所以,设,则,所以,解得,所以,所以,设,则,设,则,所以单调递增,所以,所以,即,所以单调递增,即随着的增大而增大,所以随着的增大而增大,命题得证.【点睛】此题考查利用导函数处理函数的单调性,根据函数的零点个数求参数的取值范围,通过等价转化证明与零点相关的命题.21、(Ⅰ);(Ⅱ)3.【解析】
(Ⅰ)先求导,得,已知导函数单调递增,又在区间上单调递增,故,令,求得,讨论得,而,故,进而得解;(Ⅱ)可通过必要性探路,当时,由知,又由于,则,当,,结合零点存在定理可判断必存在使得,得,,化简得,再由二次函数性质即可求证;【详解】(Ⅰ)的定义域为.易知单调递增,由题意有.令,则.令得.所以当时,单调递增;当时,单调递减.所以,而又有,因此,所以.(Ⅱ)由知,又由于,则.下面证明符合条件.若.所以.易知单调递增,而,,因此必存在使得,即.且当时,单调递减;当时,,单调递增;则.综上,的最大值为3.【点睛】本题考查导数的计算,利用导数研究函数的增
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年江苏省安全员证书考试题库及答案解析
- 2025年主管护师考试真题及详解附答案
- 2025年编程四级考试解析题及答案
- 跟踪审计工作总结及汇报方案
- 2026年大学大二(商务策划基础)方案撰写技巧综合测试题及答案
- 言语理解障碍康复训练考核试卷及答案
- 湖南省音乐教案设计及教学实施方案
- 安全员A证考试考前自测高频考点模拟试题学生专用附答案详解
- 安全员A证考试模拟卷包带答案详解(综合题)
- 安全员A证考试考前冲刺模拟题库及答案详解【全优】
- 劳务分红保密协议书
- 2022年考研英语一真题及答案解析
- 硫培非格司亭二级预防非小细胞肺癌化疗后中性粒细胞减少症的疗效和安全性临床研究
- 八年级下册冀教版单词表
- 数学-华中师大一附中2024-2025高一上学期期末试卷和解析
- 某露天矿山剥离工程施工组织设计方案
- 2024工程项目工序质量控制标准
- JGJ-T188-2009施工现场临时建筑物技术规范
- 互联网+物流平台项目创办商业计划书(完整版)
- 家庭学校社会协同育人课件
- 基于python-的车牌识别
评论
0/150
提交评论