版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
黑龙江省尚志中学2026届数学高二上期末达标检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.中国景德镇陶瓷世界闻名,其中青花瓷最受大家的喜爱,如图1这个精美的青花瓷花瓶,它的颈部(图2)外形上下对称,基本可看作是离心率为的双曲线的一部分绕其虚轴所在直线旋转所形成的曲面,若该颈部中最细处直径为16厘米,瓶口直径为20厘米,则颈部高为()A.10 B.20C.30 D.402.已知双曲线,过点作直线l,若l与该双曲线只有一个公共点,这样的直线条数为()A.1 B.2C.3 D.43.矿山爆破时,在爆破点处炸开的矿石的运动轨迹可看作是不同的抛物线,根据地质、炸药等因素可以算出这些抛物线的范围,这个范围的边界可以看作一条抛物线,叫“安全抛物线”,如图所示.已知某次矿山爆破时的安全抛物线的焦点为,则这次爆破时,矿石落点的最远处到点的距离为()A. B.2C. D.4.在平面直角坐标系xOy中,过x轴上的点P分别向圆和圆引切线,记切线长分别为.则的最小值为()A.2 B.3C.4 D.55.一条光线从点射出,经轴反射后与圆相切,则反射光线所在直线的斜率为()A.或 B.或C.或 D.或6.如图所示,在三棱锥中,E,F分别是AB,BC的中点,则等于()A. B.C. D.7.若(为虚数单位),则复数在复平面内的点位于()A.第一象限 B.第二象限C.第三象限 D.第四象限8.已知,且直线始终平分圆的周长,则的最小值是()A.2 B.C.6 D.169.平面与平面平行的充分条件可以是()A.平面内有一条直线与平面平行B.平面内有两条直线分别与平面平行C.平面内有无数条直线分别与平面平行D平面内有两条相交直线分别与平面平行10.若平面的一个法向量为,点,,,,到平面的距离为()A.1 B.2C.3 D.411.在长方体中,,,分别是棱,的中点,则异面直线,的夹角为()A. B.C. D.12.已知,若对于且都有成立,则实数的取值范围是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.从1,3,5,7中任取2个数字,从0,2,4,6,8中任取2个数字,组成没有重复数字的四位数,这样的四位数一共有___________个.(用数字作答)14.设抛物线C:的焦点为F,准线l与x轴的交点为M,P是C上一点,若|PF|=5,则|PM|=__.15.已知,,且,则的值是_________.16.在正项等比数列中,,,则的公比为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)现将两个班的艺术类考生报名表分别装进2个档案袋,第一个档案袋内有6名男生和4名女生的报名表,第二个档案袋内有5名男生和5名女生的报名表.随机选择一个档案袋,然后从中随机抽取2份报名表(1)若选择的是第一个档案袋,求从中抽到两名男生报名表的概率;(2)求抽取的报名表是一名男生一名女生的概率18.(12分)已知椭圆C:的长轴长为4,过C的一个焦点且与x轴垂直的直线被C截得的线段长为3(1)求C的方程;(2)若直线:与C交于A,B两点,线段AB的中垂线与C交于P,Q两点,且,求m的值19.(12分)已知数列的前项和为,且,(1)求的通项公式;(2)求的最小值20.(12分)已知椭圆的右焦点是椭圆上的一动点,且的最小值是1,当垂直长轴时,.(1)求椭圆的标准方程;(2)设直线与椭圆相切,且交圆于两点,求面积的最大值,并求此时直线方程.21.(12分)已知等差数列的前项和为,且,(1)求数列的通项公式;(2)若数列满足,求数列的前项和22.(10分)已知抛物线C:x2=2py的焦点为F,点N(t,1)在抛物线C上,且|NF|=.(1)求抛物线C的方程;(2)过点M(0,1)的直线l交抛物线C于不同的两点A,B,设O为坐标原点,直线OA,OB的斜率分别为k1,k2,求证:k1k2为定值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】设双曲线方程为,根据已知条件可得的值,由可得双曲线的方程,再将代入方程可得的值,即可求解.【详解】因为双曲线焦点在轴上,设双曲线方程为由双曲线的性质可知:该颈部中最细处直径为实轴长,所以,可得,因为离心率为,即,可得,所以,所以双曲线的方程为:,因瓶口直径为20厘米,根据对称性可知颈部最右点横坐标为,将代入双曲线可得,解得:,所以颈部高为,故选:B2、D【解析】先确定双曲线的右顶点,再分垂直轴、与轴不垂直两种情况讨论,当与轴不垂直时,可设直线方程为,联立直线与抛物线方程,消元整理,再分、两种情况讨论,即可得解【详解】解:根据双曲线方程可知右顶点为,使与有且只有一个公共点情况为:①当垂直轴时,此时过点的直线方程为,与双曲线只有一个公共点,②当与轴不垂直时,可设直线方程为联立方程可得当即时,方程只有一个根,此时直线与双曲线只有一个公共点,当时,,整理可得即故选:D3、D【解析】根据给定条件求出抛物线的顶点,结合抛物线的性质求出p值即可计算作答.【详解】依题意,抛物线的顶点坐标为,则抛物线的顶点到焦点的距离为,p>0,解得,于是得抛物线的方程为,由得,,即抛物线与轴的交点坐标为,因此,,所以矿石落点的最远处到点的距离为.故选:D4、D【解析】利用两点间的距离公式,将切线长的和转化为到两圆心的距离和,利用三点共线距离最小即可求解.详解】,圆心,半径,圆心,半径设点P,则,即到与两点距离之和的最小值,当、、三点共线时,的和最小,即的和最小值为.故选:D【点睛】本题考查了两点间的距离公式,需熟记公式,属于基础题.5、D【解析】由光的反射原理知,反射光线的反向延长线必过点,设反射光线所在直线的斜率为,则反射光线所在直线方程为:,即:.又因为光线与圆相切,所以,,整理:,解得:,或,故选D考点:1、圆的标准方程;2、直线的方程;3、直线与圆的位置关系.6、D【解析】根据向量的线性运算公式化简可得结果.【详解】因为E,F分别是AB,AC的中点,所以,,所以,故选:D7、A【解析】根据复数运算法则求出z=a+bi形式,根据复数的几何意义即可求解.【详解】,z对应的点在第一象限.故选:A8、B【解析】由已知直线过圆心得,再用均值不等式即可.【详解】由已知直线过圆心得:,,当且仅当时取等.故选:B.9、D【解析】根据平面与平面平行的判定定理可判断.【详解】对A,若平面内有一条直线与平面平行,则平面与平面可能平行或相交,故A错误;对B,若平面内有两条直线分别与平面平行,若这两条直线平行,则平面与平面可能平行或相交,故B错误;对C,若平面内有无数条直线分别与平面平行,若这无数条直线互相平行,则平面与平面可能平行或相交,故C错误;对D,若平面内有两条相交直线分别与平面平行,则根据平面与平面平行的判定定理可得平面与平面平行,故D正确.故选:D.10、B【解析】求出,点A到平面的距离:,由此能求出结果【详解】解:,,,,∴为平面的一条斜线,且∴点到平面的距离:故选:B.11、C【解析】设出长度,建立空间直角坐标系,根据向量求异面直线所成角即可.【详解】如下图所示,以,,所在直线方向,,轴,建立空间直角坐标系,设,,,,,,所以,,设异面直线,的夹角为,所以,所以,即异面直线,的夹角为.故选:C.12、D【解析】根据题意转化为对于且时,都有恒成立,构造函数,转化为时,恒成立,求得的导数,转化为在上恒成立,即可求解.【详解】由题意,对于且都有成立,不妨设,可得恒成立,即对于且时,都有恒成立,构造函数,可转化为,函数为单调递增函数,所以当时,恒成立,又由,所以在上恒成立,即在上恒成立,又由,所以,即实数取值范围为.故选:D二、填空题:本题共4小题,每小题5分,共20分。13、1296【解析】根据取出的数字是否含有零,分类讨论,若不含零,则有四位数个,若含有零,则有四位数个,再根据分类加法计数原理即可求出【详解】若取出的数字中不含零,则有四位数个;若取出的数字中含零,则有四位数个;所以,这样的四位数有个故答案为:129614、【解析】根据抛物线的性质及抛物线方程可求坐标,进而得解.【详解】由抛物线的方程可得焦点,准线,由题意可得,设,有抛物线的性质可得:,解得x=4,代入抛物线的方程可得,所以,故答案为:.15、【解析】根据空间向量可得,结合计算即可.【详解】由题意知,,所以,解得.故答案:316、3【解析】由题设知等比数列公比,根据已知条件及等比数列通项公式列方程求公比即可.【详解】由题设,等比数列公比,且,所以,可得或(舍),故公比为3.故答案为:3三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)选择的是第一个档案袋,从中随机抽取2份报名表,基本事件总数,从中抽到两名男生报名表包含的基本事件个数为,由此能求出从中抽到两名男生报名表的概率;(2)设事件表示抽取到第个档案袋,,设事件表示抽取的报名表是一名男生一名女生,利用全概率公式能求出抽取的报名表是一名男生一名女生的概率【小问1详解】(1)第一个档案袋内有6名男生和4名女生的报名表,选择的是第一个档案袋,从中随机抽取2份报名表,基本事件总数,从中抽到两名男生报名表包含的基本事件个数为,从中抽到两名男生报名表的概率【小问2详解】设事件表示抽取到第个档案袋,,设事件表示抽取的报名表是一名男生一名女生,则,,,,抽取的报名表是一名男生一名女生的概率为:18、(1);(2).【解析】(1)由题设可得且,求出,即可得椭圆方程.(2)联立直线l和椭圆C并整理为关于x的一元二次方程,由求出m的范围,再应用韦达定理、弦长公式求,进而可得线段AB的中垂线,同理联立曲线C求相交弦长,再由已知条件求m值,注意其范围.【小问1详解】由题意知,,则,令,可得,由题设有,则,所以C的方程为【小问2详解】联立方程得:,由,得设,,则,,所以,另一方面,,即线段AB的中点为,所以线段AB的中垂线方程为令,联立方程得:同理求法,可得:,即因此,解得,故19、(1)(2)【解析】(1)由可求得的值,由可求得数列的通项公式;(2)求得,利用二次函数的基本性质可求得的最小值.【小问1详解】解:由题意可得,解得,所以,.当时,,当时,,也满足,故对任意的,.【小问2详解】解:,所以,当或时,取得最小值,且最小值为.20、(1);(2),.【解析】(1)由的最小值为1,得到,再由,结合,求得的值,即可求得椭圆的方程.(2)设切线的方程为,联立方程组,根据直线与椭圆相切,求得,结合点到直线的距离公式和圆的弦长公式,求得的面积的表示,结合函数的单调性,即可求解.【详解】(1)由题意,点椭圆上的一动点,且的最小值是1,得,因为当垂直长轴时,可得,所以,即,又由,解得,所以椭圆的标准方程为.(2)由题意知切线的斜率一定存在,否则不能形成,设切线的方程为,联立,整理得,因为直线与椭圆相切,所以,化简得,则,因为点到直线的距离,所以,即,故的面积为,因为,可得,即,函数在上单调递增,所以,当时取等号,则,即面积的最大值为.当时,此时,所以直线的方程为.【点睛】对于直线与椭圆的位置关系的处理方法:1、判定与应用直线与椭圆的位置关系,一把转化为研究直线方程与椭圆组成的方程组的解得个数,结合判别式求解;2、对于过定点的直线,也可以通过定点在椭圆的内部或在椭圆上,判定直线与椭圆的位置关系.21、(1);(2).【解析】(1)设等差数列的公差为,根据已知条件可得出关于、的方程组,解出这两个量的值,即可求得数列的通项公式;(2)求得,利用裂项相消法可求得.【小问1详解】解:设等差数列公差为,,【小问
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年汽车后市场数字化项目可行性研究报告
- 2026年工业领域电气化市场项目评估报告
- 2026年硫化物固态电解质项目商业计划书
- 2026年氢能装备制造项目可行性研究报告
- 教职工考勤管理制度
- 幼儿院幼儿行为规范与奖惩制度
- 2025-2026年秋季第一学期学校总务或后勤工作总结:实干笃行固根基精准服务启新篇
- 包装课程设计周志
- 小学生诚信考试制度
- 电网企业法治培训课件
- 2026长治日报社工作人员招聘劳务派遣人员5人备考题库完美版
- 护理核心制度内容精要
- 湖南省娄底市期末真题重组卷-2025-2026学年四年级语文上册(统编版)
- 光伏板清洗施工方案
- 阅读理解体裁与命题方向(复习讲义)-2026年春季高考英语(上海高考专用)
- 指南抗菌药物临床应用指导原则(2025版)
- 2025年华侨生联考试题试卷及答案
- 土石方测量施工方案
- 预防冻雨灾害课件
- 2025巴彦淖尔市农垦(集团)有限公司招聘37人备考题库含答案解析(夺冠)
- 北京海淀中关村中学2026届高二上数学期末调研试题含解析
评论
0/150
提交评论