2026届湖南省岳阳县一中高一上数学期末经典模拟试题含解析_第1页
2026届湖南省岳阳县一中高一上数学期末经典模拟试题含解析_第2页
2026届湖南省岳阳县一中高一上数学期末经典模拟试题含解析_第3页
2026届湖南省岳阳县一中高一上数学期末经典模拟试题含解析_第4页
2026届湖南省岳阳县一中高一上数学期末经典模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届湖南省岳阳县一中高一上数学期末经典模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.不等式的解集为()A.(-∞,1) B.(0,1)C.(,1) D.(1,+∞)2.《掷铁饼者》取材于希腊的现实生活中的体育竞技活动,刻画的是一名强健的男子在掷铁饼过程中最具有表现力的瞬间.现在把掷铁饼者张开的双臂近似看成一张拉满弦的“弓”,掷铁饼者的手臂长约为米,肩宽约为米,“弓”所在圆的半径约为1.25米,则掷铁饼者双手之间的距离约为()A.1.012米 B.1.768米C.2.043米 D.2.945米3.若函数在区间上存在零点,则实数的取值范围是A. B.C. D.4.集合{0,1,2}的所有真子集的个数是A.5 B.6C.7 D.85.已知集合,则A. B.C.( D.)6.已知等差数列的前项和为,若,则A.18 B.13C.9 D.77.若命题:,则命题的否定为()A. B.C. D.8.为了保护水资源,提倡节约用水,某城市对居民生活用水实行“阶梯水价”,计费方法如下表:每户每月用水量水价不超过12m3的部分3元/m3超过12m3但不超过18m3的部分6元/m3超过18m3的部分9元/m3若某户居民本月缴纳的水费为90元,则此户居民本月的用水量为()A.17 B.18C.19 D.209.《九章算术》中“方田”章给出了计算弧田面积时所用的经验公式,即弧田面积=×(弦×矢+矢).弧田(如图1)由圆弧和其所对弦围成,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差.现有圆心角为,半径为2米的弧田(如图2),则这个弧田面积大约是()平方米.(,结果保留整数)A.2 B.3C.4 D.510.已知是空间两条不重合的直线,是两个不重合的平面,则下列命题中正确的是A.,,B,,C.,,D.,,二、填空题:本大题共6小题,每小题5分,共30分。11.如果对任意实数x总成立,那么a的取值范围是____________.12.函数f(x)=+的定义域为____________13.已知函数,现有如下几个命题:①该函数为偶函数;

②是该函数的一个单调递增区间;③该函数的最小正周期为;④该函数的图像关于点对称;⑤该函数值域为.其中正确命题的编号为______14.已知的定义域为,那么a的取值范围为_________15.已知函数(,,)的部分图象如图,则函数的单调递增区间为______.16.函数的最大值为().三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知定义在上的奇函数满足:①;②对任意的均有;③对任意的,,均有.(1)求的值;(2)证明在上单调递增;(3)是否存在实数,使得对任意的恒成立?若存在,求出的取值范围;若不存在,请说明理由.18.已知函数,.(1)用函数单调性的定义证明:是增函数;(2)若,则当为何值时,取得最小值?并求出其最小值.19.设,其中(1)若函数的图象关于原点成中心对称图形,求的值;(2)若函数在上是严格减函数,求的取值范围20.假设你有一笔资金用于投资,年后的投资回报总利润为万元,现有两种投资方案的模型供你选择.(1)请在下图中画出的图像;(2)从总利润的角度思考,请你选择投资方案模型.21.已知,(1)求(2)设与的夹角为,求

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】根据对数的运算化简不等式,然后求解可得.【详解】因为,,所以原不等式等价于,即.故选:A2、B【解析】由题分析出这段弓所在弧长,结合弧长公式求出其所对圆心角,双手之间的距离为其所对弦长【详解】解:由题得:弓所在的弧长为:;所以其所对的圆心角;两手之间的距离故选:B3、C【解析】由函数的零点的判定定理可得f(﹣1)f(1)<0,解不等式求得实数a的取值范围【详解】由题,函数f(x)=ax+1单调,又在区间(﹣1,1)上存在一个零点,则f(﹣1)f(1)<0,即(1﹣a)(1+a)<0,解得a<﹣1或a>1故选C【点睛】本题主要考查函数的零点的判定定理的应用,属于基础题4、C【解析】集合{0,1,2}中有三个元素,因此其真子集个数为.故选:C.5、C【解析】因为所以,故选.考点:1.集合的基本运算;2.简单不等式的解法.6、B【解析】利用等差数列通项公式、前项和列方程组,求出,.由此能求出【详解】解:等差数列的前项和为,,,,解得,故选【点睛】本题考查等差数列第7项的值的求法,考查等差数列的性质等基础知识,考查运算求解能力,是基础题7、D【解析】根据存在量词的否定是全称量词可得结果.【详解】根据存在量词的否定是全称量词可得命题的否定为.故选:D8、D【解析】根据给定条件求出水费与水价的函数关系,再由给定函数值计算作答.【详解】依题意,设此户居民月用水量为,月缴纳的水费为y元,则,整理得:,当时,,当时,,因此,由得:,解得,所以此户居民本月的用水量为.故选:D9、A【解析】先由已知条件求出,然后利用公式求解即可【详解】因为,所以,在中,,所以,所以,所以这个弧田面积为,故选:A10、D【解析】A不正确,也有可能;B不正确,也有可能;C不正确,可能或或;D正确,,,,考点:1线面位置关系;2线面垂直二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】先利用绝对值三角不等式求出的最小值,进而求出a的取值范围.【详解】,当且仅当时等号成立,故,所以a的取值范围是.故答案为:12、【解析】根据题意,结合限制条件,解指数不等式,即可求解.【详解】根据题意,由,解得且,因此定义域为.故答案为:.13、②③【解析】由于为非奇非偶函数,①错误.,此时,其在上为增函数,②正确.由于,所以函数最小正周期为,③正确.由于,故④正确.当时,,故⑤错误.综上所述,正确的编号为②③.14、【解析】根据题意可知,的解集为,由即可求出【详解】依题可知,的解集为,所以,解得故答案为:15、【解析】由函数的图象得到函数的周期,同时根据图象的性质求得一个单调增区间,然后利用周期性即可写出所有的增区间.【详解】由图可知函数f(x)的最小正周期.如图所示,一个周期内的最低点和最高点分别记作,分别作在轴上的射影,记作,根据的对称性可得的横坐标分别为,∴是函数f(x)的一个单调增区间,∴函数的单调增区间是,故答案为:,【点睛】本题关键在于掌握函数图象的对称性和周期性.一般往往先从函数的图象确定函数中的各个参数的值,再利用函数的解析式和正弦函数的性质求得单调区间,但是直接由图象得到函数的周期,并根据函数的图象的性质求得一个单调增区间,进而写出所有的增区间,更为简洁.16、【解析】利用可求最大值.【详解】因为,即,,取到最小值;所以函数的最大值为.故答案为:.【点睛】本题主要考查三角函数的最值问题,借助正弦函数的值域能方便求解,侧重考查数学抽象的核心素养.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)0;(2)详见解析;(3)存在,.【解析】(1)利用赋值法即求;(2)利用单调性的定义,由题可得,结合条件可得,即证;(3)利用赋值法可求,结合函数的单调性可把问题转化为,是否存在实数,使得或在恒成立,然后利用参变分离法即求.【小问1详解】∵对任意的,,均有,令,则,∴;【小问2详解】,且,则又,对任意的均有,∴,∴∴函数在上单调递增.【小问3详解】∵函数为奇函数且在上单调递增,∴函数在上单调递增,令,可得,令,可得,又,∴,又函数在上单调递增,在上单调递增,∴由,可得或,即是否存在实数,使得或对任意的恒成立,令,则,则对于恒成立等价于在恒成立,即在恒成立,又当时,,故不存在实数,使得恒成立,对于对任意的恒成立,等价于在恒成立,由,可得在恒成立,又,在上单调递减,∴,综上可得,存在使得对任意的恒成立.【点睛】关键点点睛:本题第二问的关键是配凑,然后利用条件可证;第三问的关键是转化为否存在实数,使得或在恒成立,再利用参变分离法解决.18、证明详见解析;(2)时,的最小值是.【解析】(1)根据函数单调性定义法证明,定义域内任取,且,在作差,变形后判断符号,证明函数的单调性;(2)首先根据函数的定义域求的范围,再根据基本不等式求最小值.【详解】(1)证明:在区间任取,设,,,,,即,所以函数在是增函数;(2),的定义域是,,设,时,,当时,,当,即时,等号成立,即时,函数取得最小值4.【点睛】易错点睛:本题的易错点是第二问容易忽略函数的定义域,换元时,也要注意中间变量的取值范围.19、(1);(2)【解析】(1)根据函数的图象关于原点成中心对称,得到是奇函数,由此求出的值,再验证,即可得出结果;(2)任取,根据函数在区间上是严格减函数,得到对任意恒成立,分离出参数,进而可求出结果.【详解】(1)因为函数的图象关于原点成中心对称图形,所以是奇函数,则,解得,此时,因此,所以是奇函数,满足题意;故;(2)任取,因为函数在上严格减函数,则对任意恒成立,即对任意恒成立,即对任意恒成立,因为,所以,则,所以对任意恒成立,又,所以,为使对任意恒成立,只需.即的取值范围是.【点睛】思路点睛:已知函数单调性求参数时,可根据单调性的定义,得到不等式,利用分离参数的方法分离出所求参数,得到参数大于(等于)或小于(等于)某个式子的性质,结合题中条件,求出对应式子的最值,即可求解参数范围.(有时会用导数的方法研究函数单调性,进而求解参数范围)20、(1)作图见解析(2)答案不唯一,具体见解析【解析】(1)根据指数函数描出几个特殊点,用平滑的曲线连接即可.(2)结合(1)中的图像,分析可得对于不同的值进行讨论即可求解.【详解】(1)(2)由图可知当时,;当时,当时,;当时,;当时,;所以当资金投资2年或4年时两种方案的回报总

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论