云南省玉溪市澄江县一中2026届高一上数学期末复习检测模拟试题含解析_第1页
云南省玉溪市澄江县一中2026届高一上数学期末复习检测模拟试题含解析_第2页
云南省玉溪市澄江县一中2026届高一上数学期末复习检测模拟试题含解析_第3页
云南省玉溪市澄江县一中2026届高一上数学期末复习检测模拟试题含解析_第4页
云南省玉溪市澄江县一中2026届高一上数学期末复习检测模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南省玉溪市澄江县一中2026届高一上数学期末复习检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列函数中,既是奇函数又是定义域内的增函数为()A. B.C. D.2.在空间四边形ABCD中,AB=BC,AD=CD,E为对角线AC的中点,下列判断正确的是()A平面ABC⊥平面BED B.平面ABC⊥平面ABDC.平面ABC⊥平面ADC D.平面ABD⊥平面BDC3.已知奇函数的定义域为,其图象是一条连续不断的曲线.若,则函数在区间内的零点个数至少为()A.1 B.2C.3 D.44.若,则所在象限是A.第一、三象限 B.第二、三象限C.第一、四象限 D.第二、四象限5.刘徽(约公元225年—295年),魏晋期间伟大的数学家,中国古典数学理论的奠基人之一.他在割圆术中提出的“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”,这可视为中国古代极限观念的佳作,割圆术的核心思想是将一个圆的内接正边形等分成个等腰三角形(如图所示),当变得很大时,这n个等腰三角形的面积之和近似等于圆的面积,运用割圆术的思想,可以得到的近似值为()A. B.C. D.6.已知角顶点与原点重合,始边与轴的正半轴重合,点在角的终边上,则()A. B.C. D.7.已知,则角的终边所在的象限是()A.第一象限 B.第二象限C.第三象限 D.第四象限8.某单位共有名职工,其中不到岁的有人,岁的有人,岁及以上的有人,现用分层抽样的方法,从中抽出名职工了解他们的健康情况.如果已知岁的职工抽取了人,则岁及以上的职工抽取的人数为()A. B.C. D.9.已知函数且,则实数的取值范围为()A. B.C. D.10.,,的大小关系是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知为第二象限角,且,则_____12.用半径为的半圆形纸片卷成一个圆锥,则这个圆锥的高为__________13.已知函数f(x)=sin(ωx+)(其中ω>0),若x=为函数f(x)的一个零点,且函数f(x)在(,)上是单调函数,则ω的最大值为______14.函数,的图象恒过定点P,则P点的坐标是_____.15.A是锐二面角α-l-β的α内一点,AB⊥β于点B,AB=,A到l的距离为2,则二面角α-l-β的平面角大小为________.16.已知函数对于任意,都有成立,则___________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,已知,分别是正方体的棱,的中点.求证:平面平面.18.已知函数是奇函数,是偶函数(1)求的值;(2)设,若对任意恒成立,求实数a的取值范围19.已知全集,集合,集合.条件①;②是的充分条件;③,使得(1)若,求;(2)若集合A,B满足条件__________(三个条件任选一个作答),求实数m的取值范围20.在底面为平行四边形的四棱锥中,,平面,且,点是的中点(Ⅰ)求证:;(Ⅱ)求证:平面;21.已知是第二象限,且,计算:(1);(2)

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】根据初等函数的性质及奇函数的定义结合反例逐项判断后可得正确的选项.【详解】对于A,的定义域为,而,但,故在定义域上不是增函数,故A错误.对于B,的定义域为,它不关于原点对称,故该函数不是奇函数,故B错误.对于C,因为时,,故在定义域上不是增函数,故C错误.对于D,因为为幂函数且幂指数为3,故其定义域为R,且为增函数,而,故为奇函数,符合.故选:D.2、A【解析】利用面面垂直的判定定理逐一判断即可【详解】连接DE,BE.因为E为对角线AC的中点,且AB=BC,AD=CD,所以DE⊥AC,BE⊥AC因为DE∩BE=E,所以AC⊥面BDEAC⊂面ABC,所以平面ABC⊥平面BED,故选A【点睛】本题主要考查了面面垂直的判定,要求熟练掌握面面垂直的判定定理3、C【解析】根据奇函数的定义域为R可得,由和奇函数的性质可得、,利用零点的存在性定理即可得出结果.【详解】奇函数的定义域为R,其图象为一条连续不断的曲线,得,由得,所以,故函数在之间至少存在一个零点,由奇函数的性质可知函数在之间至少存在一个零点,所以函数在之间至少存在3个零点.故选:C4、A【解析】先由题中不等式得出在第二象限,然后求出的范围,即可判断其所在象限【详解】因为,,所以,故在第二象限,即,故,当为偶数时,在第一象限,当为奇数时,在第三象限,即所在象限是第一、三象限故选A.【点睛】本题考查了三角函数的象限角,属于基础题5、B【解析】将一个圆的内接正边形等分成个等腰三角形;根据题意,可知个等腰三角形的面积和近似等于圆的面积,从而可求的近似值.【详解】将一个圆的内接正边形等分成个等腰三角形,设圆的半径为,则,即,所以.故选:B.6、D【解析】先根据三角函数的定义求出,然后采用弦化切,代入计算即可【详解】因为点在角的终边上,所以故选:D7、C【解析】化,可知角的终边所在的象限.【详解】,将逆时针旋转即可得到,角的终边在第三象限.故选:C【点睛】本题主要考查了象限角的概念,属于容易题.8、A【解析】计算抽样比例,求出不到35岁的应抽取人数,再求50岁及以上的应抽取人数.【详解】计算抽样比例为,所以不到35岁的应抽取(人,所以50岁及以上的应抽取(人.故选:.9、B【解析】易知函数为奇函数,且在R上为增函数,则可化为,则即可解得a的范围.【详解】函数,定义域为,满足,∴,令,∴,∴为奇函数,,∵函数,在均为增函数,∴在为增函数,∴在为增函数,∵为奇函数,∴在为增函数,∴,解得.故选:B.10、D【解析】作出弧度角的正弦线、余弦线和正切线,利用三角函数线来得出、、的大小关系.【详解】作出弧度角的正弦线、余弦线和正切线如下图所示,则,,,其中虚线表示的是角的终边,,则,即.故选:D.【点睛】本题考查同角三角函数值的大小比较,一般利用三角函数线来比较,考查数形结合思想的应用,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据同角三角函数关系结合诱导公式计算得到答案.【详解】为第二象限角,且,故,.故答案为:.12、【解析】根据圆锥的底面周长等于半圆形纸片的弧长建立等式,再根据半圆形纸片的半径为圆锥的母线长求解即可.【详解】由题得,半圆形纸片弧长为,设圆锥的底面半径为,则,故圆锥的高为.故答案为:【点睛】本题主要考查了圆锥展开图中的运算,重点是根据圆锥底面的周长等于展开后扇形的弧长,属于基础题.13、【解析】由题意,为函数的一个零点,可得,且函数在,上是单调函数可得,即可求的最大值【详解】解:由题意,为函数的一个零点,可得,则.函数在,上是单调函数,可得,即.当时,可得的最大值为3故答案为3.【点睛】本题考查了正弦型三角函数的图象及性质的应用,属于中档题.14、【解析】令,解得,且恒成立,所以函数的图象恒过定点;故填.15、【解析】如图,过点B作与,连,则有平面,从而得,所以即为二面角的平面角在中,,所以,所以锐角即二面角的平面角的大小为答案:点睛:作二面角的平面角可以通过垂线法进行,在一个半平面内找一点作另一个半平面的垂线,再过垂足作二面角的棱的垂线,两条垂线确定的平面和二面角的棱垂直,由此可得二面角的平面角,然后通过解三角形的方法求得角,解题时要注意所求角的范围16、##【解析】由可得时,函数取最小值,由此可求.【详解】,其中,.因为,所以,,解得,,则故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、见解析【解析】取的中点,连接、,则,进一步得到四边形为平行四边形,同理得到四边形为平行四边形,结合线面平行的判定即可得到结果.【详解】证明:取的中点,连接、.因为、分别为、的中点,.四边形为平行四边形..、分别为、的中点,∴,∴四边形为平行四边形,∴,∴.∵平面,平面,平面又,平面平面.【点睛】本题主要考查面面平行的判定,属于基础题型.18、(1)(2)【解析】(1)利用奇函数的定义可求得实数的值,利用偶函数的定义可求得实数的值,即可求得的值;(2)分析可知函数在上为增函数,可求得,根据已知条件得出关于实数的不等式组,由此可解得实数的取值范围.【小问1详解】解:由于为奇函数,且定义域为,则,因为,所以,,所以,恒成立,所以,,即.由于,,是偶函数,,则,所以,,所以,,因此,.【小问2详解】解:,,因为函数在上为增函数,函数在上为减函数,所以,函数在区间上是增函数,当时,,所以,,由题意得,解之得,因此,实数的取值范围是.19、(1)(2)或【解析】(1)可将带入集合中,得到集合的解集,即可求解出答案;(2)可根据题意中三个不同的条件,列出集合与集合之间的关系,即可完成求解.【小问1详解】当时,集合,集合,所以;【小问2详解】i.当选择条件①时,集合,当时,,舍;当集合时,即集合,时,,此时要满足,则,解得,结合,所以实数m的取值范围为或;ii.当选择条件②时,要满足是的充分条件,则需满足在集合时,集合是集合的子集,即,解得,所以实数m取值范围为或;iii.当选择条件③时,要使得,使得,那么需满足在集合时,集合是集合子集,即,解得,所以实数m的取值范围为或;故,实数m的取值范围为或.20、(1)见解析;(2)见解析【解析】(Ⅰ)由已知得,,从而平面,由此能证明;(Ⅱ)连接与相交于,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论