版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届湖南省长沙市开福区长沙市第一中学数学高二上期末质量跟踪监视试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.椭圆的长轴长为()A. B.C. D.2.若函数,满足且,则()A.1 B.2C.3 D.43.设函数,当自变量t由2变到2.5时,函数的平均变化率是()A.5.25 B.10.5C.5.5 D.114.已知为等差数列,且,,则()A. B.C. D.5.设a,b,c非零实数,且,则()A. B.C. D.6.双曲线的左、右焦点分别为、,P为双曲线C的右支上一点.以O为圆心a为半径的圆与相切于点M,且,则该双曲线的渐近线为()A. B.C. D.7.在某次海军演习中,已知甲驱逐舰在航母的南偏东15°方向且与航母的距离为12海里,乙护卫舰在甲驱逐舰的正西方向,若测得乙护卫舰在航母的南偏西45°方向,则甲驱逐舰与乙护卫舰的距离为()A.海里 B.海里C.海里 D.海里8.已知向量,,则等于()A. B.C. D.9.椭圆以坐标轴为对称轴,经过点,且长轴长是短轴长的倍,则椭圆的标准方程为()A. B.C.或 D.或10.在区间内随机地取出两个数,则两数之和小于的概率是()A. B.C. D.11.中国剪纸是一种用剪刀或刻刀在纸上剪刻花纹,用于装点生活或配合其他民俗活动的民间艺术.如图所示的圆形剪纸中,正六边形的所有顶点都在该圆上,若在该圆形剪纸的内部投掷一点,则该点恰好落在正六边形内部的概率为()A. B.C. D.12.已知数列为等比数列,则“,”是“为递减数列”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件二、填空题:本题共4小题,每小题5分,共20分。13.正三棱柱的底面边长和高均为2,点为侧棱的中点,连接,,则点到平面的距离为______.14.用一个平面去截半径为5cm的球,截面面积是则球心到截面的距离为_______15.已知三角形OAB顶点,,,则过B点的中线长为______.16.已知,,若x,a,b,y成等比数列,x,c,d,y成等差数列,则的最小值为_____________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)2020年8月,总书记对制止餐饮浪费行为作出重要指示,要求进一步加强宣传教育,切实培养节约习惯,在全社会营造浪费可耻、节约光荣的氛围.为贯彻总书记指示,大庆市某学校食堂从学生中招募志愿者,协助食堂宣传节约粮食的相关活动.现已有高一63人、高二42人,高三21人报名参加志愿活动.根据活动安排,拟采用分层抽样的方法,从已报名的志愿者中抽取12名志愿者,参加为期20天的第一期志愿活动(1)第一期志愿活动需从高一、高二、高三报名的学生中各抽取多少人?(2)现在要从第一期志愿者中的高二、高三学生中抽取2人粘贴宣传标语,求抽出两人都是高二学生的概率是多少?(3)食堂每天约有400人就餐,其中一组志愿者的任务是记录学生每天倒掉的剩菜剩饭的重量(单位:公斤),以10天为单位来衡量宣传节约粮食的效果.在一个周期内,这组志愿者记录的数据如下:前10天剩菜剩饭的重量为:后天剩菜剩饭的重量为:借助统计中的图、表、数字特征等知识,分析宣传节约粮食活动的效果(选择一种方法进行说明即可)18.(12分)已知双曲线的一条渐近线方程为,且双曲线C过点.(1)求双曲线C的标准方程;(2)过点M的直线与双曲线C的左右支分别交于A、B两点,是否存在直线AB,使得成立,若存在,求出直线AB的方程;若不存在,请说明理由.19.(12分)如图,在四棱锥中,平面底面ABCD,,,,,(1)证明:是直角三角形;(2)求平面PCD与平面PAB的夹角的余弦值20.(12分)证明:是无理数.(我们知道任意一个有理数都可以写成形如(m,n互质,)的形式)21.(12分)已知,,分别为三个内角,,的对边,.(Ⅰ)求;(Ⅱ)若=2,的面积为,求,.22.(10分)为庆祝中国共产党成立100周年,某校举行了党史知识竞赛,在必答题环节,甲、乙两位选手分别从3道选择题(1)甲至少抽到1道填空题(2)甲答对的题数比乙多的概率.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】由椭圆方程可直接求得.【详解】由椭圆方程知:,长轴长为.故选:D.2、C【解析】先取,得与之间的关系,然后根据导数的运算直接求导,代值可得.【详解】取,则有,即,又因为所以,所以,所以.故选:C3、B【解析】利用平均变化率的公式即得.【详解】∵,∴.故选:B.4、B【解析】由已知条件求出等差数列的公差,从而可求出【详解】设等差数列的公差为,由,,得,解得,所以,故选:B5、C【解析】对于A、B、D:取特殊值否定结论;对于C:利用作差法证明.【详解】对于A:取符合已知条件,但是不成立.故A错误;对于B:取符合已知条件,但是,所以不成立.故B错误;对于C:因为,所以.故C正确;对于D:取符合已知条件,但是,所以不成立.故D错误;故选:C.6、A【解析】连接、,利用中位线定理和双曲线定义构建参数关系,即求得渐近线方程.【详解】如图,连接、,∵M是的中点,∴是的中位线,∴,且,根据双曲线的定义,得,∴,∵与以原点为圆心a为半径的圆相切,∴,可得,中,,即得,,解得,即,得.由此得双曲线的渐近线方程为.故选:A.【点睛】本题考查了双曲线的定义的应用和渐近线的求法,属于中档题.7、A【解析】利用正弦定理可求解.【详解】设甲驱逐舰、乙护卫舰、航母所在位置分别为A,B,C,则,,.在△ABC中,由正弦定理得,即,解得,即甲驱逐舰与乙护卫舰的距离为海里故选:A8、C【解析】根据题意,结合空间向量的坐标运算,即可求解.【详解】由,,得,因此.故选:C.9、C【解析】分情况讨论焦点所在位置及椭圆方程.【详解】当椭圆的焦点在轴上时,由题意过点,故,,椭圆方程为,当椭圆焦点在轴上时,,,椭圆方程为,故选:C.10、C【解析】利用几何概型的面积型,确定两数之和小于的区域,进而根据面积比求概率.【详解】由题意知:若两个数分别为,则,如上图示,阴影部分即为,∴两数之和小于的概率.故选:C11、D【解析】设圆的半径,求出圆的面积与正六边形的面积,再根据几何概型的概率公式计算可得;【详解】解:设圆的半径,则,则,所以,所以在该圆形剪纸的内部投掷一点,则该点恰好落在正六边形内部的概率;故选:D12、A【解析】本题可依次判断“,”是否是“为递减数列”的充分条件以及必要条件,即可得出结果.【详解】若等比数列满足、,则数列为递减数列,故“,”是“为递减数列”的充分条件,因为若等比数列满足、,则数列也是递减数列,所以“,”不是“为递减数列”的必要条件,综上所述,“,”是“为递减数列”的充分不必要条件,故选:A.【点睛】本题考查充分条件以及必要条件的判定,考查等比数列以及递减数列的相关性质,体现了基础性和综合性,考查推理能力,是简单题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】建立空间直角坐标系,利用空间向量求点面距离的公式可以直接求出.【详解】如图,建立空间直角坐标系,为的中点,由已知,,,,,所以,,设平面的法向量为,,即:,取,得,,则点到平面的距离为.故答案为:.14、4cm【解析】根据圆面积公式算出截面圆的半径,利用球的截面圆性质与勾股定理算出球心到截面的距离【详解】解:设截面圆的半径为r,截面的面积是,,可得又球的半径为5cm,根据球的截面圆性质,可得截面到球心的距离为故答案为:4cm【点睛】本题主要考查了球的截面圆性质、勾股定理等知识,考查了空间想象能力,属于基础题15、【解析】先求出中点坐标,再由距离公式得出过B点的中线长.【详解】由中点坐标公式可得中点,则过B点的中线长为.故答案为:16、4【解析】根据等差数列和等比数列性质把用表示,然后由基本不等式得最小值【详解】由题意,,所以,当且仅当时等号成立故答案为:4三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)6,4,2;(2);(3)答案见解析.【解析】(1)先求出抽样比,然后每次按比例抽取即可求出;(2)先求出抽出两人的基本事件,再求出两人都是高二学生包含的基本事件,即可求出概率;(3)可求出平均值进行判断;也可画出茎叶图观察判断.【详解】解:(1)报名的学生共有126人,抽取的比例为,所以高一抽取人,高二抽取人,高三抽取人.(2)记高二四个学生为1,2,3,4,高三两个学生为5,6,抽出两人表示为(x,y),则抽出两人的基本事件为(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)共15个基本事件,其中高二学生都在同一组包含(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),共6个基本事件.记抽出两人都是高二学生为事件,则,所以高二学生都在同一组的概率是.(3)法一:(数字特征)前10天的平均值为23.5,后10天的平均值为20.5,因为20.5<23.5,所以宣传节约粮食活动的效果很好.法二:(茎叶图)画出茎叶图因为前10天的重量集中在23、24附近,而后10天的重量集中在20附近,所以节约宣传后剩饭剩菜明显减少,宣传效果很好.18、(1);(2)存在,直线AB的方程为:或.【解析】(1)根据给定的渐近线方程及所过的点列式计算作答.(2)假定存在符合条件的直线AB,设出其方程,借助弦长公式计算判断作答.【小问1详解】依题意,,解得:,所以双曲线C的标准方程是.【小问2详解】假定存在直线AB,使得成立,显然不垂直于y轴,否则,设直线:,由消去x并整理得:,因直线与双曲线C的左右支分别交于A、B两点,设,于是得,则有,即或,因此,,解得,所以存在直线AB,使得成立,此时,直线AB的方程为:或.19、(1)证明见解析(2)【解析】(1)连接BD,在四边形ABCD中求得,在中,取得,得到,由线面垂直的性质证得平面,得到,再由线面垂直的判定定理,证得平面PBD,进而得到,即可证得是直角三角形(2)以为原点,以所在直线为x轴,过点且与平行直线为y轴,所在直线为z轴,建立的空间直角坐标系,分别求得平面和平面的法向量,利用向量的夹角公式,即可求解.【小问1详解】证明:如图所示,连接BD,因为四边形中,可得,,,所以,,则在中,由余弦定理可得,所以,所以因为平面底面,平面底面,底面ABCD,所以平面PAB,因为平面PAB,所以,因为,,所以平面PBD因为平面PBD,所以,即是直角三角形【小问2详解】解:由(1)知平面PAB,取AB的中点O,连接PO,因为,所以,因为平面,平面底面,平面底面,所以底面,以为原点,以所在直线为x轴,过点且与平行的直线为y轴,所在直线为z轴,建立如图所示的空间直角坐标系,设,则,,,,,可得,,,设平面的一个法向量为,则,令,可得,,所以,因为是平面的一个法向量,所以,即平面与平面的夹角的余弦值为20、详见解析【解析】利用反证法,即可推得矛盾.【详解】假设有理数,则,则,为整数,的尾数只能是0,1,4,5,6,9,的尾数只能是0,1,4,5,6,9,则的尾数是0,2,8,由得,尾数为0,则的尾数是0,而的尾数为0或5,这与为最简分数,的最大公约数是1,相矛盾,所以假设不正确,是无理数.21、(1)(2)=2【解析】(Ⅰ)由及正弦定理得由于,所以,又,故.(Ⅱ)的面积==,故=4,而故=8,解得=222、(1);(2).【解析】(1)把3道选择题(2)设,分别表示甲答对1道题,2道题的事件,,分别表示乙答对0道题,1道题的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年三亚城市职业学院马克思主义基本原理概论期末考试模拟题附答案
- 2025云南省临沧市社会工作联合会招聘实习生(2人)备考题库附答案
- 水声压电器件制造工安全风险考核试卷含答案
- 腌腊发酵制品加工工冲突管理模拟考核试卷含答案
- 套筒卷制工班组协作考核试卷含答案
- 硅树脂生产工岗前安全意识考核试卷含答案
- 白酒制曲工安全实操水平考核试卷含答案
- 2024年淮南联合大学马克思主义基本原理概论期末考试题附答案
- 2024年洛阳市直遴选笔试真题汇编附答案
- 2024年辽宁科技大学辅导员考试笔试真题汇编附答案
- 复方蒲公英注射液在银屑病中的应用研究
- 住培中医病例讨论-面瘫
- 设备安装施工方案范本
- 卫生院副院长先进事迹材料
- 复发性抑郁症个案查房课件
- 网络直播创业计划书
- 人类学概论(第四版)课件 第1、2章 人类学要义第一节何为人类学、人类学的理论发展过程
- 《功能性食品学》第七章-辅助改善记忆的功能性食品
- 幕墙工程竣工验收报告2-2
- 1、工程竣工决算财务审计服务项目投标技术方案
- 改进维持性血液透析患者贫血状况PDCA
评论
0/150
提交评论