湖南省凤凰县凤凰皇仓中学2026届高二数学第一学期期末调研试题含解析_第1页
湖南省凤凰县凤凰皇仓中学2026届高二数学第一学期期末调研试题含解析_第2页
湖南省凤凰县凤凰皇仓中学2026届高二数学第一学期期末调研试题含解析_第3页
湖南省凤凰县凤凰皇仓中学2026届高二数学第一学期期末调研试题含解析_第4页
湖南省凤凰县凤凰皇仓中学2026届高二数学第一学期期末调研试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南省凤凰县凤凰皇仓中学2026届高二数学第一学期期末调研试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.执行如图所示的流程图,则输出k的值为()A.3 B.4C.5 D.22.圆与圆的位置关系是()A.相交 B.相离C.内切 D.外切3.命题“”的否定是()A. B.C. D.4.正数a,b满足,若不等式对任意实数x恒成立,则实数m的取值范围是A. B.C. D.5.设等比数列的前项和为,若,则()A. B.C. D.6.若直线与曲线只有一个公共点,则m的取值范围是()A. B.C.或 D.或7.若抛物线与直线:相交于两点,则弦的长为()A.6 B.8C. D.8.若正三棱柱的所有棱长都相等,D是的中点,则直线AD与平面所成角的正弦值为A. B.C. D.9.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,他所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,而是逐项差数之差或者高次差相等.对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有一个高阶等差数列,其前7项分别为1,5,11,21,37,61,95,则该数列的第7项为()A.101 B.99C.95 D.9110.在空间直角坐标系中,已知点,,则线段的中点坐标与向量的模长分别是()A.;5 B.;C.; D.;11.已知,,,则,,的大小关系是A. B.C. D.12.已知m,n表示两条不同直线,表示两个不同平面.设有两个命题::若,则;:若,则.则下列命题中为真命题的是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若椭圆W:的离心率是,则m=___________.14.过点且与直线垂直的直线方程为______15.已知圆锥的高为,体积为,则以该圆锥的母线为半径的球的表面积为______________.16.已知数列的前项和为,且满足,则______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥中,,为的中点,连接.(1)求证:平面;(2)求平面与平面的夹角的余弦值.18.(12分)已知等差数列满足,,的前项和为.(1)求及;(2)令,求数列的前项和.19.(12分)已知函数,.(1)当时,求函数的极值;(2)若存在,使不等式成立,求实数的取值范围.20.(12分)已知公差不为0的等差数列的前项和为,且,,成等比数列,且.(1)求的通项公式;(2)若,求数列的前n项和.21.(12分)已知a>0,b>0,a+b=1,求证:.22.(10分)已知数列是公差为2的等差数列,它的前n项和为Sn,且成等比数列.(1)求的通项公式;(2)求数列的前n项和.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据程序框图运行程序,直到满足,输出结果即可.【详解】按照程序框图运行程序,输入,则,,不满足,循环;,,不满足,循环;,,不满足,循环;,,满足,输出结果:故选:B.2、A【解析】求出两圆的圆心及半径,求出圆心距,从而可得出结论.【详解】解:圆的圆心为,半径为,圆圆心为,半径为,则两圆圆心距,因为,所以两圆相交.故选:A.3、C【解析】特称命题的否定,先把存在量词改为全称量词,再把结论进行否定即可.【详解】命题“”的否定是“”.故选:C4、A【解析】利用基本不等式求得的最小值,把问题转化为恒成立的类型,求解的最大值即可.【详解】,,且a,b为正数,,当且仅当,即时,,若不等式对任意实数x恒成立,则对任意实数x恒成立,即对任意实数x恒成立,,,故选:A【点睛】本题主要考查了恒成立问题,基本不等式求最值,二次函数求最值,属于中档题.5、C【解析】利用等比数列前项和的性质,,,,成等比数列求解.【详解】解:因为数列为等比数列,则,,成等比数列,设,则,则,故,所以,得到,所以.故选:C.6、D【解析】根据曲线方程的特征,发现曲线表示在轴上方的图象,画出图形,根据图形上直线的三个特殊位置,当已知直线位于直线位置时,把已知直线的解析式代入椭圆方程中,消去得到关于的一元二次方程,由题意可知根的判别式等于0即可求出此时对应的的值;当已知直线位于直线及直线的位置时,分别求出对应的的值,写出满足题意得的范围,综上,得到所有满足题意得的取值范围【详解】根据曲线,得到,解得:;,画出曲线的图象,为椭圆在轴上边的一部分,如图所示:当直线在直线的位置时,直线与椭圆相切,故只有一个交点,把直线代入椭圆方程得:,得到,即,化简得:,解得或(舍去),则时,直线与曲线只有一个公共点;当直线在直线位置时,直线与曲线刚好有两个交点,此时,当直线在直线位置时,直线与曲线只有一个公共点,此时,则当时,直线与曲线只有一个公共点,综上,满足题意得的范围是或故选:D7、B【解析】由题得抛物线的焦点坐标为刚好在直线上,再联立直线和抛物线的方程,利用韦达定理和抛物线的定义求解.【详解】解:由题得.由题得抛物线的焦点坐标为刚好在直线上,设,联立直线和抛物线方程得,所以.所以.故选:B8、A【解析】建立空间直角坐标系,得到相关点的坐标后求出直线的方向向量和平面的法向量,借助向量的运算求出线面角的正弦值【详解】取AC的中点为坐标原点,建立如图所示的空间直角坐标系设三棱柱的棱长为2,则,∴设为平面的一个法向量,由故令,得设直线AD与平面所成角为,则,所以直线AD与平面所成角的正弦值为故选A【点睛】空间向量的引入为解决立体几何问题提供了较好的方法,解题时首先要建立适当的坐标系,得到相关点的坐标后借助向量的运算,将空间图形的位置关系或数量关系转化为向量的运算处理.在解决空间角的问题时,首先求出向量夹角的余弦值,然后再转化为所求的空间角.解题时要注意向量的夹角和空间角之间的联系和区别,避免出现错误9、C【解析】根据所给数列找到规律:两次后项减前项所得数列为公差为2的数列,进而反向确定原数列的第7项.【详解】根据所给定义,用数列的后一项减去前一项得到一个数列,得到的数列也用后一项减去前一项得到一个数列,即得到了一个等差数列,如图:故选:C.10、B【解析】根据给定条件利用中点坐标公式及空间向量模长的坐标表示计算作答.【详解】因点,,所以线段的中点坐标为,.故选:B11、B【解析】若对数式的底相同,直接利用对数函数的性质判断即可,若底不同,则根据结构构造函数,利用函数的单调性判断大小【详解】对于的大小:,,明显;对于的大小:构造函数,则,当时,在上单调递增,当时,在上单调递减,即对于的大小:,,,故选B【点睛】将两两变成结构相同的对数形式,然后利用对数函数的性质判断,对于结构类似的,可以通过构造函数来来比较大小,此题是一道中等难度的题目12、B【解析】利用直线与平面,平面与平面的位置关系判断2个命题的真假,再利用复合命题的真值表判断选项的正误即可【详解】,表示两条不同直线,,表示两个不同平面:若,,则也可能,也可能与相交,所以是假命题,为真命题;:令直线的方向向量为,直线的方向向量为,若,则,则,所以是真命题,所以为假命题;所以为假命题,是真命题,为假命题,是真命题,所以为假命题故选:二、填空题:本题共4小题,每小题5分,共20分。13、或【解析】按照椭圆的焦点在轴和在轴上两种情况分别求解,可得所求结果【详解】①当椭圆的焦点在轴上时,则有,由题意得,解得②当椭圆的焦点在轴上时,则有,由题意得,解得综上可得或故答案为或【点睛】解答本题的关键有两个:一个是注意分类讨论思想方法的运用,注意椭圆焦点所在的位置;二是解题时要分清椭圆方程中各个参数的几何意义,然后再根据离心率的定义求解14、【解析】先设出与直线垂直的直线方程,再把代入进行求解.【详解】设与直线垂直的直线为,将代入得:,解得:,故所求直线方程为.故答案为:15、【解析】利用圆锥体积公式可求得圆锥底面半径,利用勾股定理可得母线长;根据球的表面积公式可求得结果.【详解】设圆锥的底面半径为,母线长为,圆锥体积,,,以为半径的球的表面积.故答案为:.16、【解析】根据所给的通项公式,代入求得,并由代入求得,即可求得的值.【详解】数列的前n项和,则,而,,∴,则,故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明过程见解析;(2).【解析】(1)根据平行四边形的判定定理和性质,结合线面垂直的判定定理进行证明即可;(2)利用空间向量夹角公式进行求解即可.【小问1详解】因为为的中点,所以,而,所以四边形是平行四边形,因此,因为,,为的中点,所以,,而,因为,所以,而平面,所以平面;【小问2详解】根据(1),建立如图所示的空间直角坐标系,,于是有:,则平面的法向量为:,设平面的法向量为:,所以,设平面与平面的夹角为,所以.18、(1),;(2).【解析】(1)根据等差数列的通项公式及已知条件,,解方程组可得,,进而可得等差数列的通项公式,再利用等差数列的前项和公式可得;(2)将数列的通项公式代入可得的通项公式,利用错位相减法求和可得结果.【详解】(1)设等差数列的首项为,公差为,由于,,所以,,解得,,所以,;(2)因为,所以,故,,两式相减得,所以.【点睛】本题的核心是考查错位相减求和.一般地,如果数列{an}是等差数列,{bn}是等比数列,求数列{an·bn}的前n项和时,可采用错位相减法求和,一般是和式两边同乘以等比数列{bn}的公比,然后作差求解.19、(1)函数在上递增,在上递减,极大值为,无极小值(2)【解析】(1)求出函数的导函数,再根据导数的符号求得单调区间,再根据极值的定义即可得解;(2)若存在,使不等式成立,问题转化为,令,,利用导数求出函数的最大值即可得出答案.【小问1详解】解:当时,,则,当时,,当时,,所以函数在上递增,在上递减,所以函数的极大值为,无极小值;【小问2详解】解:若存在,使不等式成立,则,即,则问题转化为,令,,,当时,,当时,,所以函数在递增,在上递减,所以,所以.20、(1)(2)【解析】(1)根据等差数列的通项公式和等比中项,可得,再根据等差数列的前项和公式,即可求出,,进而求出结果;(2)由(1)得,结合等比数列前项和公式和对数运算性质,利用分组求和,即可求出结果.【小问1详解】解:设的公差为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论