版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届安徽省池州市东至二中数学高二上期末联考模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在等差数列中,,则等于A.2 B.18C.4 D.92.集合,,则()A. B.C. D.3.已知是双曲线C的两个焦点,P为C上一点,且,则C的离心率为()A. B.C. D.4.已知a,b是互不重合直线,,是互不重合的平面,下列命题正确的是()A.若,,则B.若,,,则C.若,,则D.若,,,则5.已知等比数列的公比为,则“是递增数列”的一个充分条件是()A. B.C. D.6.已知正三棱柱的侧棱长与底面边长相等,则AB1与侧面ACC1A1所成角的正弦值等于A. B.C. D.7.圆C:的圆心坐标和半径分别为()A.和4 B.(-3,2)和4C.和 D.和8.函数极小值为()A. B.C. D.9.已知抛物线上的一点,则点M到抛物线焦点F的距离等于()A.6 B.5C.4 D.210.已知命题若直线与抛物线有且仅有一个公共点,则直线与抛物线相切,命题若,则方程表示椭圆.下列命题是真命题的是A. B.C. D.11.在长方体中,若,,则异而直线与所成角的余弦值为()A. B.C. D.12.(5分)已知集合A={x|−2<x<4},集合B={x|(x−6)(x+1)<0},则A∩B=A.{x|1<x<4} B.{x|x<4或x>6}C.{x|−2<x<−1} D.{x|−1<x<4}二、填空题:本题共4小题,每小题5分,共20分。13.某汽车运输公司购买了一批豪华大客车投入运营.据市场分析,每辆客车营运的总利润y(单位:10万元)与营运年数x()为二次函数的关系(如图),则每辆客车营运年数为________时,营运的年平均利润最大14.设,为实数,已知经过点的椭圆与双曲线有相同的焦点,则___________.15.若关于的不等式恒成立,则实数的取值范围是______.16.已知数列满足,记,则______;数列的通项公式为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知空间中三点,,,设,(1)求向量与向量的夹角的余弦值;(2)若与互相垂直,求实数的值18.(12分)如图,在四棱锥中,底面是平行四边形,,M,N分别为的中点,.(1)证明:;(2)求直线与平面所成角的正弦值.19.(12分)已知数列的前n项和为,且.(1)求数列的通项公式;(2)若,设,求数列的前n项和.20.(12分)已知向量,(1)求;(2)求;(3)若(),求的值21.(12分)如图,在四棱柱中,底面,,,且,(1)求证:平面平面;(2)求二面角所成角的余弦值22.(10分)已知抛物线:()的焦点为,点在上,点在的内侧,且的最小值为(1)求的方程;(2)过点的直线与抛物线交于不同的两点,,直线,(为坐标原点)分别交直线于点,记直线,,的斜率分别为,,,若,求的值
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】利用等差数列性质得到,,计算得到答案.详解】等差数列中,故选D【点睛】本题考查了等差数列的计算,利用性质可以简化运算,是解题的关键.2、A【解析】先解不等式求得集合再求交集.【详解】解不等式得:,则有,解不等式,解得或,则有或,所以为.故选:A.3、A【解析】根据双曲线的定义及条件,表示出,结合余弦定理可得答案.【详解】因为,由双曲线的定义可得,所以,;因为,由余弦定理可得,整理可得,所以,即.故选:A【点睛】关键点睛:双曲线的定义是入手点,利用余弦定理建立间的等量关系是求解的关键.4、B【解析】根据线线,线面,面面位置关系的判定方法即可逐项判断.【详解】A:若,,则或a,故A错误;B:若,,则a⊥β,又,则a⊥b,故B正确;C:若,,则或α与β相交,故C错误;D:若,,,则不能判断α与β是否垂直,故D错误.故选:B.5、D【解析】由等比数列满足递增数列,可进行和两项关系的比较,从而确定和的大小关系.【详解】由等比数列是递增数列,若,则,得;若,则,得;所以等比数列是递增数列,或,;故等比数列是递增数列是递增数列的一个充分条件为,.故选:D.6、C【解析】过作,连接,由于,故平面,所以所求直线与平面所成的角为,设棱长为,则,故,.点睛:本题主要考查空间立体几何直线与平面的位置关系,考查直线与平面所成的角,考查线面垂直的证明方法和常见几何体的结构特征.由于题目所给几何体为直三棱柱,故侧棱和底面垂直,这是一个重要的隐含条件,通过作交线的垂线,即可得到高,由此作出二面角的平面角.7、C【解析】先将方程化为一般形式,再根据公式计算求解即可.【详解】解:可化为,由圆心为,半径,易知圆心的坐标为,半径为故选:C8、A【解析】利用导数分析函数的单调性,可求得该函数的极小值.【详解】对函数求导得,令,可得或,列表如下:减极小值增极大值减所以,函数的极小值为.故选:A.9、B【解析】将点代入抛物线方程求出,再由抛物线的焦半径公式可得答案.详解】将点代入抛物线方程可得,解得则故选:B10、B【解析】若直线与抛物线的对称轴平行,满足条件,此时直线与抛物线相交,可判断命题为假;当时,,命题为真,根据复合命题的真假关系,即可得出结论.【详解】若直线与抛物线的对称轴平行,直线与抛物线只有一个交点,直线与抛物不相切,可得命题是假命题,当时,,方程表示椭圆命题是真命题,则是真命题.故选:B.【点睛】本题考查复合命题真假的判断,属于基础题.11、C【解析】通过平移把异面直线平移到同一平面中,所以取,的中点,易知且过中心点,所以异而直线与所成角为和所成角,通过解三角形即可得解.【详解】根据长方体的对称性可得体对角线过中心点,取,的中点,易知且过中心点,所以异而直线和所成角为和所成角,连接,在中,,,,所以则异而直线与所成角的余弦值为:,故选:C.12、D【解析】由(x−6)(x+1)<0,得−1<x<6,从而有B={x|−1<x<6},所以A∩B={x|−1<x<4},故选D二、填空题:本题共4小题,每小题5分,共20分。13、5【解析】首先根据题意得到二次函数的解析式为,再利用基本不等式求解的最大值即可.【详解】根据题意得到:抛物线的顶点为,过点,开口向下,设二次函数的解析式为,所以,解得,即,则营运的年平均利润,当且仅当,即时取等号故答案为:5.14、1【解析】由点P在椭圆上,可得的值,再根据椭圆与双曲线有相同的焦点即可求解.【详解】解:因为点在椭圆上,所以,解得,所以椭圆方程为,又椭圆与双曲线有相同的焦点,所以,解得,故答案为:1.15、【解析】设由题可知,当时,可得适合题意,当时,可求函数的最小值即得,当时不合题意,即得.【详解】设,由题可知,∴,当时,,适合题意,所以,当时,令,则,此时时,,单调递减,,,单调递增,∴,又,∴,∴,即,解得,当时,时,,,故的值有正有负,不合题意;综上,实数的取值范围是.故答案为:.【点睛】关键点点睛:本题考查不等式恒成立求参数的取值范围,设由题可知,当时,利用导数可求函数的最小值,结合,可得,进而通过解,即得.16、①.②..【解析】结合递推公式计算出,即可求出的值;证得数列是以3为首项,2为公比的等比数列,即可求出结果.【详解】因为,所以,,,因此,由于,又,即,所以,因此数列是以3为首项,2为公比的等比数列,则,即,故答案为:;.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)或.【解析】(1)坐标表示出、,利用向量夹角的坐标表示求夹角余弦值;(2)坐标表示出k+、k-2,利用向量垂直的坐标表示列方程求的值.【详解】由题设,=(1,1,0),=(-1,0,2)(1)cosθ=,所以和的夹角余弦值为.(2)k+=k(1,1,0)+(-1,0,2)=(k-1,k,2),k-2=(k+2,k,-4),又(k+)⊥(k-2),则(k-1,k,2)·(k+2,k,-4)=(k-1)(k+2)+k2-8=2k2+k-10=0,解得k=-或2.18、(1)证明见解析;(2)【解析】(1)要证,可证,由题意可得,,易证,从而平面,即有,从而得证;(2)取中点,根据题意可知,两两垂直,所以以点为坐标原点,建立空间直角坐标系,再分别求出向量和平面的一个法向量,即可根据线面角的向量公式求出【详解】(1)中,,,,由余弦定理可得,所以,.由题意且,平面,而平面,所以,又,所以(2)由,,而与相交,所以平面,因为,所以,取中点,连接,则两两垂直,以点为坐标原点,如图所示,建立空间直角坐标系,则,又为中点,所以.由(1)得平面,所以平面的一个法向量从而直线与平面所成角的正弦值为【点睛】本题第一问主要考查线面垂直的相互转化,要证明,可以考虑,题中与有垂直关系直线较多,易证平面,从而使问题得以解决;第二问思路直接,由第一问的垂直关系可以建立空间直角坐标系,根据线面角的向量公式即可计算得出19、(1)(2).【解析】(1)由数列的前n项和与通项公式之间的关系即可完成.(2)由错位相减法即可解决此类“差比”数列的求和.【小问1详解】由,得当时,,上下两式相减得,,又当时,满足上式,所以数列的通项公式;【小问2详解】由(1)可知,所以,则,上下两式相减得,所以.20、(1)(2)(3)【解析】(1)根据向量数量积的坐标表示即可得解;(2)求出,再根据空间向量的模的坐标表示即可得解;(3)由,可得,再根据数量积的运算律即可得解.【小问1详解】解:;【小问2详解】解:;【小问3详解】解:因为,所以,即,解得.21、(1)证明见解析;(2).【解析】(1)证出,,由线面垂直的判定定理可得平面,再根据面面垂直的判定定理即可证明.(2)分别以,,为,,轴,建立空间直角坐标系,求出平面的一个法向量以及平面的一个法向量,由即可求解.【详解】(1)证明:因为,,所以,,因为,所以,所以,即因为底面,所以底面,所以因为,所以平面,又平面,所以平面平面(2)解:如图,分别以,,为,,轴,建立空间直角坐标系,则,,,,所以,,,设平面的法向量为,则令,得设平面的法向量为,则令,得,所以,由图知二面角为锐角,所以二面角所成角的余弦值为【点睛】思路点睛:解决二面角相关问题通常用向量法,具体步骤为:(1)建坐标系,建立坐标系的原则是尽可能的使得已知点在坐标轴上或在坐标平面内;(2)根据题意写出点的坐标以及向量的坐标,注意坐标不能出错.(3)利用数量积验证垂直或求平面的法向量.(4)利用法向量求距离、线面角或二面角.22、(1)(2)【解析】(1)先求出抛物线的准线,作于由抛物
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年食品加工生产线升级项目评估报告
- 2025年渔业年度工作总结
- 市政污水管维修调排水方案及流程
- 地下连续墙施工质量控制要点
- 2025年抗肿瘤药物临床合理使用考试试题及答案
- 财务部年度工作总结报告范文
- 2025年工程质量监管年度工作总结
- 2025年节后复工复产通信施工安全知识培训考试题及答案
- 人造草坪技术交底
- 建设工程施工合同纠纷要素式起诉状模板贴合实际案例
- 口述史研究活动方案
- 高压燃气管道施工方案
- 房屋租赁合同txt
- 加工中心点检表
- 水库清淤工程可行性研究报告
- THBFIA 0004-2020 红枣制品标准
- GB/T 25630-2010透平压缩机性能试验规程
- GB/T 19610-2004卷烟通风的测定定义和测量原理
- 精排版《化工原理》讲稿(全)
- 市场营销学-第12章-服务市场营销课件
- 小微型客车租赁经营备案表
评论
0/150
提交评论