版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省济南三中2026届高二数学第一学期期末调研模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.方程表示的曲线是()A.一个椭圆和一条直线 B.一个椭圆和一条射线C.一条射线 D.一个椭圆2.当圆的圆心到直线的距离最大时,()A B.C. D.3.已知等比数列的前n项和为,且满足公比0<q<1,<0,则下列说法不正确的是()A.一定单调递减 B.一定单调递增C.式子-≥0恒成立 D.可能满足=,且k≠14.如图,四棱锥的底面是矩形,设,,,是棱上一点,且,则()A. B.C. D.5.直线的斜率是()A. B.C. D.6.若动点在方程所表示的曲线上,则以下结论正确的是()①曲线关于原点成中心对称图形;②动点到坐标原点的距离的取值范围为;③动点与点的最小距离为;④动点与点的连线斜率的取值范围是.A.①② B.①②③C.③④ D.①②④7.已知两直线与,则与间的距离为()A. B.C. D.8.若函数,则单调增区间为()A. B.C. D.9.一质点从出发,做匀速直线运动,每秒的速度为秒后质点所处的位置为()A. B.C. D.10.若直线的斜率,则直线的倾斜角的取值范围是()A. B.C. D.11.“”是“”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件12.已知各项均为正数的等比数列{},=5,=10,则=A. B.7C.6 D.二、填空题:本题共4小题,每小题5分,共20分。13.如图,在正方体中,、分别是、的中点,则异面直线与所成角的大小是____________.14.从1,2,3,4,5中任取两个不同的数,其中一个作为对数的底数a,另一个作为对数的真数b.则的概率为______.15.已知O为坐标原点,抛物线C:的焦点为F,P为C上一点,PF与x轴垂直,Q为x轴上一点,且,若,则______.16.如图,椭圆左顶点为轴上一点满足,且线段与椭圆交于点是以为底边的等腰三角形,则椭圆离心率为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知抛物线的焦点为,直线与抛物线的准线交于点,为坐标原点,(1)求抛物线的方程;(2)直线与抛物线交于,两点,求的面积18.(12分)(1)求函数的单调区间.(2)用向量方法证明:已知直线l,a和平面,,,,求证:.19.(12分)已知各项为正数的等比数列中,,.(1)求数列的通项公式;(2)设,求数列的前n项和.20.(12分)如图,已知圆锥SO底面圆的半径r=1,直径AB与直径CD垂直,母线SA与底面所成的角为.(1)求圆锥SO的侧面积;(2)若E为母线SA的中点,求二面角E-CD-B的大小.(结果用反三角函数值表示)21.(12分)已知展开式中,第三项的系数与第四项的系数相等(1)求n的值;(2)求展开式中有理项的系数之和(用数字作答)22.(10分)已知函数.(1)求函数的极值;(2)是否存在实数,,,对任意的正数,都有成立?若存在,求出,,的所有值;若不存在,请说明理由.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据题意得到或,即可求解.【详解】由方程,可得或,即或,所以方程表示的曲线为一个椭圆或一条直线.故选:A.2、C【解析】求出圆心坐标和直线过定点,当圆心和定点的连线与直线垂直时满足题意,再利用两直线垂直,斜率乘积为-1求解即可.【详解】解:因为圆的圆心为,半径,又因为直线过定点A(-1,1),故当与直线垂直时,圆心到直线的距离最大,此时有,即,解得.故选:C.3、D【解析】根据等比数列的通项公式,前n项和的意义,可逐项分析求解.【详解】因为等比数列的前n项和为,且满足公比0<q<1,<0,所以当时,由可得,故数列为增函数,故B正确;由0<q<1,<0知,所以,故一定单调递减,故A正确;因为当时,,,所以,即-,当时,,综上,故C正确;若=,且k≠1,则,即,因为,故,故矛盾,所以D不正确.故选:D4、B【解析】根据空间向量基本定理求解【详解】由已知故选:B5、D【解析】把直线方程化为斜截式即得【详解】直线方程的斜截式为,斜率为故选:D6、A【解析】将原方程等价变形为,将方程中的换为,换为,方程不变,可判断①;利用两点间的距离公式,结合二次函数知识可判断②和③;取特殊点可判断④.【详解】因为等价于,即,对于①,将方程中的换为,换为,方程不变,所以曲线关于原点成中心对称图形,故①正确;对于②,设,则动点到坐标原点的距离,因为,所以,故②正确;对于③,设,动点与点的距离为,因为函数在上递减,所以当时,函数取得最小值,从而取得最小值,故③不正确;对于④,当时,因为,所以,故④不正确.综上所述:结论正确的是:①②.故选:A7、B【解析】把直线的方程化简,再利用平行线间距离公式直接计算得解.【详解】直线的方程化为:,显然,,所以与间的距离为.故选:B8、C【解析】求出导函数,令解不等式即可得答案.【详解】解:因为函数,所以,令,得,所以的单调增区间为,故选:C.9、A【解析】利用空间向量的线性运算即可求解.【详解】2秒后质点所处的位置为.故选:A【点睛】本题考查了空间向量的线性运算,考查了基本知识掌握的情况以及学生的综合素养,属于基础题.10、B【解析】根据斜率的取值范围,结合来求得倾斜角的取值范围.【详解】设倾斜角为,因为,且,所以.故选:B11、B【解析】求出的等价条件,结合充分条件和必要条件的定义判断可得出结论.【详解】,因“”“”且“”“”,因此,“”是“”的必要不充分条件.故选:B.12、A【解析】由等比数列的性质知,a1a2a3,a4a5a6,a7a8a9成等比数列,所以a4a5a6=故答案为考点:等比数列的性质、指数幂的运算、根式与指数式的互化等知识,转化与化归的数学思想二、填空题:本题共4小题,每小题5分,共20分。13、【解析】分别以所在直线为轴,建立空间直角坐标系,设,则,,即异面直线A1M与DN所成角的大小是考点:异面直线所成的角14、##【解析】利用列举法,结合古典概型概率计算公式以及对数的知识求得正确答案.【详解】的所有可能取值为,,共种,满足的为,,共种,所以的概率为.故答案为:15、3【解析】先求点坐标,再由已知得Q点坐标,由列方程得解.【详解】抛物线:()的焦点,∵P为上一点,与轴垂直,所以P的横坐标为,代入抛物线方程求得P的纵坐标为,不妨设,因为Q为轴上一点,且,所以Q在F的右侧,又,,,因为,所以,,所以3故答案为:3.16、##【解析】根据题设条件可得坐标,代入椭圆方程后可求椭圆的离心率.【详解】因为,故,,且在轴的正半轴上,则在第二象限中,故,代入椭圆方程有:即,故,故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)根据题意建立关于的方程,解得的值即可.(2)联列方程组并消元,韦达定理整体思想求的长,再求点到直线的距离,进而求面积.【小问1详解】由题意可得,,则,因为,所以,解得,故抛物线的方程为【小问2详解】由(1)可知,则点到直线的距离联立,整理得设,,则,从而因为直线过抛物线的焦点,所以故的面积为18、(1)的单调减区间为和,单调增区间为;(2)证明见解析.【解析】(1)求出导函数,由得增区间,由得减区间;(2)说明直线方向向量与平行的法向量垂直后可得【详解】(1)解:定义域为R,,,解得,.当或时,,当时,.所以的单调减区间为和,单调增区间为.(2)证明:在直线a上取非零向量,因为,所以是直线l的方向向量,设是平面的一个法向量,因为,所以.又,所以.19、(1);(2)【解析】(1)根据条件求出即可;(2),然后利用等差数列的求和公式求出答案即可.【详解】(1)且,,(2)20、(1)(2)【解析】(1)先根据母线与底面的夹角求出圆锥的母线长,然后根据圆锥的侧面积公式即可(2)利用三角形的中位线性质,先求出二面角,然后利用二面角与二面角的互补关系即可求得【小问1详解】根据母线SA与底面所成的角为,且底面圆的半径可得:则圆锥的侧面积为:【小问2详解】如图所示,过点作底面的垂线交于,连接,则为的中位线则有:,,易知,则,又直径AB与直径CD垂直,则则有:为二面角可得:又二面角与二面角互为补角,则二面角的余弦值为故二面角大小为21、(1)8;(2).【解析】(1)由题设可得,进而写出第三、四项的系数,结合已知列方程求n值即可.(2)由(1)有,确定有理项的对应k值,进而求得对应项的系数,即可得结果.小问1详解】由题意,二项式展开式的通项公式所以第三项系数为,第四项系数为,由,解得,即n的值为8【小问2详解】由(1)知:当,3,6时,对应的是有理项当时,展开式中对应的有理项为;当时,展开式中对应的有理项为;当时,展开式中对应的有理项为;故展开式中有理项的系数之和为22、(1)极小值为:,无极大值(2),,【解析】(1)先求导求单调性,再判断极值点求极值即可;(2)易知,只需要为函数和的公切线即可,求出公切线,代入后分别证明和成立即可.【小问1详解】由题意知:,令,解得,令,解得,所以函数在单调递增,在单调递减,所以为函数的极小值点,即极小值为:,无极大值.【小问2详解】设,易知,所以点是和的公共点,要使成立,只需要为函数和的公切线即可,由(1)知,,所以在点处的切线为:,同理可得在点处的切线为:,由题意知为同一条直线,所以解得,即等价于;下面证明这个式子成立:首先证明等价于,设,所以,恒成立,所以单调递增,易知,所以当时,,当时,,所以在单调递减,在单调递增,所以,故不等式成立,即成立;再证明:等价于,设,所以,所以当时,,当时,,所以在单调递增,在单调递减,所以,故不等式成立,即成立;综上所述,存在,,使得成立.故:,,.【
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论