浙江省绍兴市2026届高一数学第一学期期末经典模拟试题含解析_第1页
浙江省绍兴市2026届高一数学第一学期期末经典模拟试题含解析_第2页
浙江省绍兴市2026届高一数学第一学期期末经典模拟试题含解析_第3页
浙江省绍兴市2026届高一数学第一学期期末经典模拟试题含解析_第4页
浙江省绍兴市2026届高一数学第一学期期末经典模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江省绍兴市2026届高一数学第一学期期末经典模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.长方体中,,,E为中点,则异面直线与CE所成角为()A. B.C. D.2.若圆上有且只有两个点到直线的距离等于1,则半径r的取值范围是A.(4,6) B.[4,6]C.(4,5) D.(4,5]3.某几何体的三视图如图所示,数量单位为cm,它的体积是()A. B.C. D.4.命题“,是4倍数”的否定为()A.,是4的倍数 B.,不是4的倍数C.,不是4倍数 D.,不是4的倍数5.已知函数部分图象如图所示,则A. B.C. D.6.函数的最小值和最大值分别为()A. B.C. D.7.直线与函数的图像恰有三个公共点,则实数的取值范围是A. B.C. D.8.下列四条直线,倾斜角最大的是A. B.C. D.9.若函数是定义域为的奇函数,且当时,,则当时,()A. B.C. D.10.设函数的定义域为,若存在,使得成立,则称是函数的一个不动点,下列函数存在不动点的是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知,则________12.已知的图象的对称轴为_________________13.已知函数,关于方程有四个不同的实数解,则的取值范围为__________14.已知圆柱的底面半径为,高为2,若该圆柱的两个底面的圆周都在一个球面上,则这个球的表面积为______15.某医药研究所研发一种新药,如果成年人按规定的剂量服用,服药后每毫升血液中的含药量y(微克)与时间t(时)之间近似满足如图所示的关系.若每毫升血液中含药量不低于0.5微克时,治疗疾病有效,则服药一次治疗疾病的有效时间为___________小时.16.已知向量,若,则实数的值为______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数⑴判断并证明函数的奇偶性;⑵若,求实数的值.18.已知函数fx=2sin(1)求fx(2)若fx在区间-π619.已知对数函数.(1)若函数,讨论函数的单调性;(2)对于(1)中的函数,若,不等式的解集非空,求实数的取值范围.20.已知集合,或,.(1)求,;(2)求.21.已知,且,(1)求,的值;(2),求的值

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】以为原点,为轴,为轴,为轴,建立空间直角坐标系,利用向量法能求出异面直线与所成角【详解】解:长方体中,,,为中点,以为原点,为轴,为轴,为轴,建立空间直角坐标系,,,,,,,,设异面直线与所成角为,则,,异面直线与所成角为故选:【点睛】本题考查异面直线所成角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,属于中档题2、A【解析】由圆,可得圆心的坐标为圆心到直线的距离为:由得所以的取值范围是故答案选点睛:本题的关键是理解“圆上有且只有两个点到直线的距离等于1”,将其转化为点到直线的距离,结合题意计算求得结果3、C【解析】由三视图可知,此几何体为直角梯形的四棱锥,根据四棱锥的体积公式即可求出结果.【详解】由三视图复原几何体为四棱锥,如图:它高为,底面是直角梯形,长底边为,上底为,高为,棱锥的高垂直底面梯形的高的中点,所以几何体的体积为:故选:C【点睛】本题考查了由三视图求几何体的体积,解答此类问题的关键是判断几何体的形状以及几何尺寸,同时需熟记锥体的体积公式,属于基础题.4、B【解析】根据特称量词命题的否定是全称量词命题即可求解【详解】因为特称量词命题的否定是全称量词命题,所以命题“,是4的倍数”的否定为“,不是4的倍数”故选:B5、C【解析】由图可以得到周期,然后利用周期公式求,再将特殊点代入即可求得的表达式,结合的范围即可确定的值.【详解】由图可知,,则,所以,则.将点代入得,即,解得,因为,所以.答案为C.【点睛】已知图像求函数解析式的问题:(1):一般由图像求出周期,然后利用公式求解.(2):一般根据图像的最大值或者最小值即可求得.(3):一般将已知点代入即可求得.6、C【解析】2.∴当时,,当时,,故选C.7、C【解析】解方程组,得,或由直线与函数的图像恰有三个公共点,作出图象,结合图象,知∴实数的取值范围是故选C【点睛】本题考查满足条件的实数的取值范围的求法,解题时要认真审题,注意数形结合思想的合理运用8、C【解析】直线方程y=x+1的斜率为1,倾斜角为45∘,直线方程y=2x+1的斜率为2,倾斜角为α(60∘<α<90∘),直线方程y=−x+1的斜率为−1,倾斜角为135∘,直线方程x=1的斜率不存在,倾斜角为90∘.所以C中直线的倾斜角最大.本题选择C选项.点睛:直线的倾斜角与斜率的关系斜率k是一个实数,当倾斜角α≠90°时,k=tanα.直线都有斜倾角,但并不是每条直线都存在斜率,倾斜角为90°的直线无斜率.9、D【解析】设,由奇函数的定义可得出,即可得解.【详解】当时,,由奇函数的定义可得.故选:D.10、D【解析】把选项中不同的代入,去判断方程是否有解,来验证函数是否存在不动点即可.【详解】选项A:若,则,即,方程无解.故函数不存在不动点;选项B:若,则,即,方程无解.故函数不存在不动点;选项C:若,则,即或,两种情况均无解.故函数不存在不动点;选项D:若,则,即设,则,则函数在上存在零点.即方程有解.函数存在不动点.故选:D二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】利用和的齐次分式,表示为表示的式子,即可求解.【详解】.故答案为:12、【解析】根据诱导公式可得,然后用二倍角公式化简,进而可求.【详解】因为所以,故对称轴为.故答案为:13、【解析】作出的图象如下:结合图像可知,,故令得:或,令得:,且等号取不到,故,故填.点睛:一般讨论函数零点个数问题,都要转化为方程根的个数问题或两个函数图像交点的个数问题,本题由于涉及函数为初等函数,可以考虑函数图像来解决,转化为过定点的直线与抛物线变形图形的交点问题,对函数图像处理能力要求较高.14、【解析】直接利用圆柱的底面直径,高、球体的直径构成直角三角形其中为斜边,利用勾股定理求出的值,然后利用球体的表面积公式可得出答案【详解】设球的半径为,由圆柱的性质可得,圆柱的底面直径,高、球体的直径构成直角三角形其中为斜边,因为圆柱的底面半径为,高为2,所以,,因此,这个球的表面积为,故答案为【点睛】本题主要圆柱的几何性质,考查球体表面积的计算,意在考查空间想象能力以及对基础知识的理解与应用,属于中等题15、【解析】根据图象求出函数的解析式,然后由已知构造不等式,解不等式即可得解.【详解】当时,函数图象是一个线段,由于过原点与点,故其解析式为,当时,函数的解析式为,因为在曲线上,所以,解得,所以函数的解析式为,综上,,由题意有或,解得,所以,所以服药一次治疗疾病有效时间为个小时,故答案为:16、;【解析】由题意得三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)求出函数的定义域,利用函数的奇偶性的定义判断即可;(2)是奇函数,则结合,求解代入求解即可.【详解】(1)解:是奇函数.证明:要等价于即故的定义域为设任意则又因为所以是奇函数.(2)由(1)知,是奇函数,则联立得即解得18、(1)π;单调递减区间是π3+kπ,5π【解析】(1)直接利用三角函数关系式的恒等变换和正弦型函数的性质的应用求出结果(2)由(1)知fx=sin2x-π【详解】解:(1)由己知,有f=-=3所以fx的最小正周期:T=由π2得fx的单调递减区间是π(2)由(1)知fx=sin所以2x-π要使fx在区间-π6即y=sin2x-π所以2m-π6所以m的最小值为π3【点睛】本题考查的知识要点:三角函数关系式的变换,正弦型函数的性质的应用,主要考查学生的运算能力和转换能力及思维能力,属于中档题19、(1)详见解析;(2).【解析】(1)由对数函数的定义,得到的值,进而得到函数的解析式,再根据复合函数的单调性,即可求解函数的单调性.(2)不等式的解集非空,得,利用函数的单调性,求得函数的最小值,即可求得实数的取值范围.【详解】(1)由题中可知:,解得:,所以函数的解析式,∵,∴,∴,即的定义域为,由于,令则:由对称轴可知,在单调递增,在单调递减;又因为在单调递增,故单调递增区间,单调递减区间为.(2)不等式的解集非空,所以,由(1)知,当时,函数单调递增区间,单调递减区间为,又,所以,所以,,所以实数的取值范围.20、(1)或,(2)【解析】(1)根据并集和交集定义即可求出;(2)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论