版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
张拉索膜结构找形分析与计算:理论、方法与工程实践一、引言1.1研究背景与意义随着建筑技术的飞速发展以及人们对建筑美学和功能需求的不断提高,张拉索膜结构作为一种新型的空间结构形式,在现代建筑中得到了日益广泛的应用。这种结构融合了高强度的索和轻质的膜材,通过合理施加预应力,使其能够形成稳定的空间形态,以承受各种荷载作用。张拉索膜结构凭借其独特的优势,在众多建筑领域中展现出巨大的潜力。例如在体育场馆建设中,如2012年建成的伦敦奥林匹克体育场,其索系支承式膜结构的罩蓬,不仅为观众提供了良好的观赛空间,还展现出独特的建筑造型;在商业建筑方面,上海世博轴的超大规模张拉膜结构体系,总长度约840m,最大跨度约97m,膜面总投影面积约61000㎡,为商业活动营造了富有特色的空间环境;在文化设施领域,也有许多采用张拉索膜结构的建筑,为文化活动提供了新颖的场所。张拉索膜结构之所以受到青睐,主要归因于其显著的优点。在结构性能方面,它受力合理,能够充分发挥索和膜材的力学性能,用较少的材料构建大跨度空间,从而提高结构效率,降低材料成本。从建筑造型角度来看,张拉索膜结构可塑造出丰富多样、自由流畅的建筑形态,满足建筑师对于独特建筑造型的追求,为城市增添独特的景观。此外,这种结构还具有施工速度快、自重轻、经济性良好等优势,使其在各类建筑项目中具有较高的性价比。然而,张拉索膜结构的设计与分析相较于传统建筑结构更为复杂。由于索和膜材的柔性特点,结构的形状和力学性能对预应力分布极为敏感。在初始状态下,索膜结构本身不具备足够的刚度和确定的形状,需要通过找形分析来确定合理的预应力分布和初始形态,以保证结构在使用过程中的安全性和稳定性。找形分析与计算作为张拉索膜结构设计的关键环节,对于确保结构性能和实现预期建筑效果起着决定性作用。准确的找形分析能够确定结构在预应力作用下的合理形态,使结构在各种荷载工况下保持良好的力学性能,避免出现应力集中、膜面褶皱或索松弛等问题,从而保障结构的安全性和可靠性。同时,精确的找形计算结果也为后续的荷载分析、裁剪分析以及施工过程提供了重要依据,对于控制工程成本、保证施工质量和进度具有重要意义。综上所述,深入研究张拉索膜结构的找形分析与计算方法,不仅具有重要的理论价值,能够丰富和完善空间结构的分析理论体系,还具有广泛的工程应用价值,可为实际工程中的张拉索膜结构设计与施工提供科学、可靠的技术支持,推动张拉索膜结构在现代建筑中的进一步发展和应用。1.2国内外研究现状张拉索膜结构的找形分析与计算一直是国内外学者和工程界研究的重点领域,经过多年的发展,取得了丰硕的研究成果。国外对张拉索膜结构的研究起步较早。20世纪中叶,随着材料科学和计算机技术的发展,张拉索膜结构开始在建筑领域崭露头角。早期,学者们主要致力于建立索膜结构的基本力学模型和分析方法。例如,德国学者Linkwitz和Schek在索膜结构的形态分析方面做出了开创性工作,提出了基于力密度法的找形分析方法,为索膜结构的找形分析奠定了理论基础。力密度法通过定义力密度参数,将结构的平衡方程转化为线性方程组,从而简化了找形分析过程,使得索膜结构的形状求解更加高效和准确。随后,动力松弛法也得到了广泛应用,该方法基于动力学原理,通过引入虚拟质量和阻尼,将静力平衡问题转化为动力问题进行求解,能够有效地处理复杂边界条件和大变形问题。随着计算机技术的飞速发展,有限元方法逐渐成为索膜结构分析的主要手段。国外学者在有限元理论应用于索膜结构分析方面进行了深入研究,开发了一系列专业的分析软件,如德国的Abaqus、美国的ANSYS等。这些软件能够精确模拟索膜结构在各种荷载工况下的力学行为,包括非线性分析、稳定性分析等。例如,Abaqus软件采用先进的非线性求解算法,能够准确捕捉索膜结构的几何非线性和材料非线性特性,为索膜结构的设计和分析提供了强大的工具。在实际工程应用方面,国外建成了许多具有代表性的张拉索膜结构建筑,如1972年德国慕尼黑奥运会体育场馆,其采用了索网支承的膜结构屋面,是索膜结构在大型体育建筑中的首次成功应用,展示了张拉索膜结构在大跨度空间建筑中的独特优势;1999年落成的英国千年穹顶,弯顶直径达320m,屋盖采用圆形的张力膜结构,膜面支撑在72根辐射状钢索上,通过间距为25m的斜拉吊索和系索为桅杆所支撑,是当时世界上最大的张拉索膜结构建筑之一,体现了张拉索膜结构在复杂造型建筑中的应用潜力。这些工程实践不仅推动了张拉索膜结构技术的发展,也为后续研究提供了宝贵的经验。国内对张拉索膜结构的研究始于20世纪80年代,虽然起步相对较晚,但发展迅速。早期主要是对国外先进理论和技术的引进与消化吸收,随着研究的深入,国内学者在找形分析方法、计算理论和工程应用等方面取得了一系列具有自主知识产权的成果。在找形分析方法方面,国内学者对力密度法、动力松弛法和非线性有限元法等传统方法进行了改进和完善,提出了一些新的算法和思路。例如,在力密度法的基础上,通过引入自适应调整策略,提高了找形结果的精度和收敛速度;针对动力松弛法中参数选择对计算结果的影响问题,进行了深入研究,提出了合理的参数取值范围和优化方法。同时,也开展了对新型找形分析方法的探索,如基于智能算法的找形分析方法,将遗传算法、粒子群优化算法等智能算法应用于索膜结构的找形分析,通过优化结构的形状和预应力分布,提高结构的性能和经济性。在计算理论方面,国内学者针对索膜结构的几何非线性和材料非线性特性,开展了深入研究,建立了更加精确的力学模型和计算理论。考虑到索膜材料的各向异性、非线性本构关系以及结构在大变形情况下的几何非线性效应,对传统的有限元理论进行了扩展和改进,提出了适用于索膜结构分析的非线性有限元方法。通过大量的数值模拟和试验研究,验证了这些方法的有效性和可靠性,为索膜结构的设计和分析提供了坚实的理论基础。在工程应用方面,国内也建成了许多具有代表性的张拉索膜结构建筑。1997年建成的上海八万人体育场,看台罩蓬采用膜结构,膜材料为进口玻璃纤维织物涂敷聚四氟乙烯涂层(PTFE)材料,是组合式膜结构体系,这是膜结构首次在我国应用于大型永久性建筑,标志着膜结构建筑作为一种新的建筑结构被我国各界人士认可,拉开了膜结构建筑在我国广泛应用的帷幕;2010年上海世博会的世博轴,采用了超大规模的张拉膜结构体系,总长度约840m,最大跨度约97m,膜面总投影面积约61000㎡,其索膜顶棚采用连续的张拉式索膜结构体系,展示了我国在张拉索膜结构设计和施工方面的高超水平,也为我国张拉索膜结构的发展提供了重要的实践经验。尽管国内外在张拉索膜结构找形分析与计算方面取得了显著进展,但仍存在一些有待进一步研究和解决的问题。例如,对于复杂边界条件和多荷载工况下的索膜结构找形分析,现有的方法还存在一定的局限性,计算精度和效率有待提高;在考虑材料非线性和结构疲劳性能等方面的研究还相对薄弱,需要进一步深入探索;此外,如何将找形分析结果与实际施工过程更好地结合,确保施工过程中结构的安全和形态符合设计要求,也是未来研究的重点方向之一。1.3研究内容与方法1.3.1研究内容本文将深入研究张拉索膜结构的找形分析与计算,具体内容涵盖以下几个关键方面:找形分析方法研究:全面梳理并深入探讨力密度法、动力松弛法和非线性有限元法等经典找形分析方法。针对力密度法,深入研究其理论基础,通过公式推导和数值算例,分析其在不同结构形式和边界条件下的适用性和计算精度。对于动力松弛法,研究其基于动力学原理的计算机制,分析虚拟质量和阻尼参数对计算结果的影响规律,提出合理的参数选择方法。在非线性有限元法方面,详细研究其在索膜结构分析中的应用,包括单元类型的选择、非线性方程的求解策略以及收敛准则的确定等,通过与其他方法的对比分析,明确其优势和局限性。此外,还将探索新型找形分析方法,如基于智能算法的找形分析方法,研究如何将遗传算法、粒子群优化算法等智能算法应用于索膜结构的找形分析,通过优化结构的形状和预应力分布,提高结构的性能和经济性。计算理论研究:考虑索膜结构的几何非线性和材料非线性特性,建立精确的力学模型和计算理论。在几何非线性方面,研究索膜结构在大变形情况下的几何关系变化,推导考虑几何非线性的平衡方程和本构关系。针对材料非线性,分析索膜材料的各向异性、非线性本构关系,建立适合索膜材料的本构模型。同时,研究如何在有限元计算中准确模拟索膜结构的非线性行为,包括非线性迭代算法的选择、收敛性判断和计算效率的提高等,为索膜结构的精确计算提供理论支持。案例分析:选取具有代表性的张拉索膜结构工程案例,运用所研究的找形分析方法和计算理论进行详细分析。通过实际案例,验证找形分析方法和计算理论的有效性和可靠性,分析结构在不同工况下的力学性能,包括应力分布、位移变化和稳定性等。同时,结合案例分析,研究施工过程对索膜结构性能的影响,提出施工过程中的控制措施和建议,为实际工程的设计和施工提供参考。1.3.2研究方法为实现上述研究内容,本文将综合运用以下研究方法:理论推导:基于结构力学、材料力学等基本理论,对张拉索膜结构的找形分析方法和计算理论进行深入的数学推导和理论分析。建立索膜结构的力学模型,推导平衡方程、本构关系和非线性方程,为找形分析和计算提供理论基础。数值模拟:利用大型通用有限元软件,如ANSYS、ABAQUS等,对张拉索膜结构进行数值模拟分析。通过建立有限元模型,模拟索膜结构在不同工况下的力学行为,包括找形分析、荷载分析和稳定性分析等。对比不同找形分析方法在有限元软件中的实现过程和计算结果,分析其优缺点和适用范围。案例研究:选取国内外典型的张拉索膜结构工程案例,收集工程设计资料、施工记录和监测数据等。对案例进行详细的分析和研究,将理论计算结果与实际工程数据进行对比验证,总结工程实践中的经验和教训,为理论研究提供实际依据,同时为实际工程的设计和施工提供参考。二、张拉索膜结构概述2.1结构特点与分类2.1.1特点张拉索膜结构作为一种新型的空间结构形式,具有一系列独特的特点,使其在现代建筑中得到广泛应用。轻质高强:张拉索膜结构主要由轻质的膜材和高强度的钢索组成。膜材通常采用纤维织物涂覆特定涂层制成,如常见的聚四氟乙烯(PTFE)涂层玻璃纤维膜材和聚氯乙烯(PVC)涂层聚酯纤维膜材等,其密度远小于传统建筑材料,如钢材和混凝土。例如,PTFE膜材的重量一般在100-400g/㎡之间,而PVC膜材的重量也仅在300-1000g/㎡左右,相比之下,普通混凝土的容重约为2400kg/m³。同时,钢索具有极高的抗拉强度,能够有效地承受拉力,与膜材协同工作,共同承担荷载。这种轻质高强的材料组合,使得张拉索膜结构在满足结构强度要求的前提下,大大减轻了结构自重,从而降低了基础荷载,减少了基础工程的造价和施工难度。例如,在一些大跨度的体育场馆中,采用张拉索膜结构的屋面,其自重可比传统的钢结构屋面减轻30%-50%,不仅降低了建筑成本,还提高了结构的抗震性能。造型自由:张拉索膜结构具有极高的造型自由度,能够创造出丰富多样、自由流畅的建筑形态。由于膜材具有良好的柔韧性,可通过合理布置钢索和支承结构,对膜材施加不同方向和大小的预应力,使其形成各种复杂的曲面形状。建筑师可以充分发挥创意,将张拉索膜结构设计成各种独特的造型,如马鞍形、双曲抛物面、帐篷形等,为建筑赋予独特的艺术魅力。例如,2008年北京奥运会的国家游泳中心“水立方”,其外层采用了ETFE膜结构,通过独特的气枕设计和复杂的曲面造型,营造出晶莹剔透的“水泡泡”效果,成为了建筑造型艺术的经典之作;还有2012年建成的伦敦奥林匹克体育场,其索系支承式膜结构的罩蓬,呈现出独特的起伏形态,不仅为观众提供了良好的观赛空间,还展现出独特的建筑造型,成为伦敦的标志性建筑之一。透光性好:膜材具有良好的透光性能,能够有效地利用自然光,减少人工照明的使用,从而降低能源消耗,实现建筑节能。不同类型的膜材透光率有所差异,一般来说,PVC膜材的透光率在5%-20%之间,PTFE膜材的透光率在10%-20%左右,而ETFE膜材的透光率可高达95%。例如,在一些商业建筑和体育场馆中,采用透光性好的膜材作为屋面或墙面,白天可以让充足的自然光线进入室内,营造出明亮、舒适的空间环境,同时减少了照明设备的开启时间,降低了能源消耗。此外,膜材的透光性还可以通过涂层颜色或面层颜色进行调节,以满足不同建筑的采光和美学需求。夜晚,在内部灯光的照射下,膜结构又能呈现出独特的光影效果,为建筑增添别样的魅力。自洁性强:部分膜材表面具有自洁功能,能够保持建筑外观的清洁和美观。例如,PTFE膜材表面光滑,不粘性强,灰尘、污垢等不易附着,在雨水的冲刷下,能够自行清洁,保持膜面的洁净。这一特性使得张拉索膜结构建筑在长期使用过程中,无需频繁进行清洗维护,降低了维护成本和工作量。相比之下,传统建筑材料如混凝土和砖石,容易吸附灰尘和污垢,需要定期进行清洗和维护,否则会影响建筑的外观和使用寿命。施工便捷:张拉索膜结构的施工过程相对简单,施工周期较短。由于膜材和钢索的重量较轻,运输和安装都较为方便,不需要大型的起重设备和复杂的施工工艺。在施工现场,只需将预制好的膜材和钢索进行组装和张拉,即可完成结构的搭建。与传统的混凝土结构和钢结构建筑相比,张拉索膜结构的施工工期可缩短30%-50%,能够快速满足项目的建设需求。例如,在一些临时性建筑或紧急救灾项目中,张拉索膜结构的快速搭建优势尤为明显,可以在短时间内为人们提供安全的庇护场所。2.1.2分类张拉索膜结构根据其结构形式和受力特点的不同,可以分为多种类型,常见的有以下几种:索网式:索网式张拉索膜结构由相互交叉的索网和覆盖在其上的膜材组成。索网作为主要的受力构件,承受膜材传来的荷载,并将其传递到支承结构上。索网通常采用高强度的钢索,通过合理布置索的方向和间距,形成稳定的受力体系。膜材则张拉在索网之上,形成封闭的空间。这种结构形式具有较高的结构效率和较大的跨越能力,适用于大跨度的建筑,如体育场馆、展览馆等。例如,美国丹佛国际机场候机大楼采用了索网式张拉索膜结构,其巨大的索网覆盖面积达50万平方米,为旅客提供了宽敞明亮的候机空间,展示了索网式张拉索膜结构在大跨度建筑中的应用优势。脊索式:脊索式张拉索膜结构以脊索和谷索作为主要的承重构件,膜材张拉在脊索和谷索之间。脊索一般位于膜面的高处,承受拉力,谷索则位于膜面的低处,起到稳定膜面的作用。这种结构形式能够形成独特的造型,具有较好的视觉效果。同时,脊索和谷索的布置可以有效地调整膜面的应力分布,提高结构的稳定性。脊索式张拉索膜结构常用于一些对建筑造型有较高要求的项目,如文化建筑、景观建筑等。例如,某文化艺术中心采用了脊索式张拉索膜结构,其独特的脊索和谷索布置,形成了富有动感的建筑形态,与周围的环境相得益彰,成为当地的文化地标。桅杆式:桅杆式张拉索膜结构通过桅杆来支承膜材,钢索将膜材与桅杆连接,并施加预应力,使膜材形成稳定的曲面。桅杆作为主要的竖向支承构件,承担膜材和钢索传来的荷载。这种结构形式具有较强的表现力,能够营造出简洁、大气的建筑形象。桅杆式张拉索膜结构适用于各种规模的建筑,尤其是一些标志性建筑,如城市广场的标志性建筑、商业中心的入口建筑等。例如,某城市广场的标志性建筑采用了桅杆式张拉索膜结构,高耸的桅杆和张拉的膜材,形成了独特的视觉焦点,吸引了众多市民和游客的关注。骨架支承式:骨架支承式张拉索膜结构是在传统的骨架结构基础上,张拉膜材形成的一种结构形式。骨架结构通常采用钢结构或混凝土结构,作为膜材的支承体系,承受膜材传来的荷载。膜材张拉在骨架结构上,起到围护和装饰的作用。这种结构形式结合了骨架结构的稳定性和膜结构的轻盈美观,适用于各种类型的建筑,尤其是一些对结构稳定性要求较高的建筑,如工业建筑、仓库等。例如,某工业厂房采用了骨架支承式张拉索膜结构,利用钢结构骨架提供稳定的支撑,张拉膜材作为屋面和墙面,既满足了工业生产的功能需求,又降低了建筑成本,同时还具有较好的外观效果。2.2工程应用案例分析2.2.1大型体育场馆案例以威海体育场为例,其位于威海市环翠区文化中路90号,是一座综合性体育场,于1999年动工,2003年建成并投入使用。该体育场建筑面积42000平方米,占地面积70350平方米,最多可容纳32000名观众,其看台罩蓬采用了全张拉悬索膜结构,这在国内尚属首例。威海体育场主体为钢筋混凝土框剪结构,主要部分分为三层,局部为五层。看台罩蓬由34个伞形膜单元构成,每个单元包括桅杆、前后拉索、脊索、谷索、边索和膜体。索膜单体为单尖单柱形式,整体外观为马鞍形,投影为近似椭圆形,长轴外缘236米,短轴外缘206米,长轴两侧看台罩蓬出挑长度为16.14米,最高点高度24.40米。膜材选用法国进口的聚涂层聚酯纤维膜材,外加PVDF面层(型号为法国法拉利1202T),具有白色、自重轻、经济性好、自洁性好、耐久性好、有一定透明度等特点。威海体育场的张拉索膜结构在实际应用中展现出了诸多优势。在结构性能方面,这种全张拉悬索膜结构受力合理,能够充分发挥索和膜材的力学性能。通过合理布置索和膜材,形成了稳定的受力体系,有效地承受了各种荷载作用,包括风荷载、雪荷载以及自重等。例如,在多次强风天气中,威海体育场的膜结构依然保持稳定,未出现任何损坏或变形过大的情况,充分证明了其良好的结构性能和抗风能力。同时,这种结构形式还具有较大的跨越能力,能够为观众提供宽敞、无遮挡的观赛空间,满足了体育场馆大空间的使用需求。从建筑造型角度来看,威海体育场的张拉索膜结构呈现出独特的马鞍形外观,远望犹如一艘即将远航的帆船,造型新颖独特,给人以强烈的视觉冲击。这种独特的建筑造型不仅成为了威海市的标志性建筑之一,还为城市增添了独特的景观,提升了城市的文化品味和形象。此外,膜材的透光性也为体育场内提供了充足的自然采光,减少了人工照明的使用,降低了能源消耗,同时营造出了明亮、舒适的观赛环境。然而,威海体育场的张拉索膜结构在应用过程中也面临着一些挑战。首先,张拉索膜结构的施工精度要求较高,在施工过程中需要严格控制索和膜材的张拉顺序、张拉力大小以及节点的安装精度等。例如,在威海体育场的施工过程中,对索的张拉精度要求控制在极小的范围内,以确保膜面能够均匀受力,避免出现应力集中或膜面褶皱等问题。这对施工技术和施工人员的专业素质提出了很高的要求,增加了施工难度和施工成本。其次,膜材的耐久性和维护问题也是需要关注的重点。尽管选用的膜材具有较好的耐久性和自洁性,但长期暴露在自然环境中,仍可能受到紫外线、风雨侵蚀等因素的影响,导致膜材性能下降。因此,需要定期对膜结构进行检查和维护,及时发现并处理潜在的问题,以确保结构的安全和正常使用。此外,张拉索膜结构对温度变化较为敏感,在温度变化较大的地区,可能会因膜材的热胀冷缩而产生附加应力,影响结构的性能,这也需要在设计和施工中加以考虑。2.2.2商业建筑案例以上海世博轴为例,其采用了超大规模的张拉膜结构体系,总长度约840m,最大跨度约97m,膜面总投影面积约61000㎡。世博轴的索膜顶棚采用连续的张拉式索膜结构体系,由索网、膜材和支承结构组成。索网作为主要的受力构件,承受膜材传来的荷载,并将其传递到支承结构上。膜材则张拉在索网上,形成了独特的建筑造型。世博轴的膜材选用了PTFE膜材,这种膜材具有良好的自洁性、强度高、防火阻燃、不受紫外线光的影响等特点,能够满足商业建筑对建筑材料的高性能要求。上海世博轴的张拉索膜结构对空间利用和建筑外观产生了显著的影响。在空间利用方面,张拉索膜结构的大跨度特性为世博轴创造了开阔、无柱的内部空间,极大地提高了空间的利用率。这种宽敞的空间可以灵活布置各种商业设施和展览展示区域,满足了世博会期间大量人流的集散和活动需求。同时,膜材的透光性使得自然光线能够充分进入室内,营造出明亮、舒适的空间氛围,减少了人工照明的使用,降低了能源消耗,实现了节能环保。例如,在白天,世博轴内部通过自然采光即可满足大部分区域的照明需求,为游客提供了良好的视觉体验。从建筑外观来看,上海世博轴的张拉膜结构呈现出独特的波浪形造型,富有动感和韵律美。起伏的膜面与周围的建筑和环境相互呼应,形成了独特的城市景观。夜晚,在灯光的映照下,膜结构散发出柔和的光芒,宛如一条璀璨的丝带,成为了上海世博会的标志性景观之一。这种独特的建筑外观吸引了众多游客的关注和喜爱,提升了世博轴的知名度和影响力。此外,张拉索膜结构的轻盈质感与传统商业建筑的厚重感形成鲜明对比,为商业建筑的设计带来了新的思路和理念,推动了建筑美学的发展。三、找形分析理论基础3.1基本概念与原理3.1.1找形的定义与目的找形,又被称为形态分析,是张拉索膜结构设计过程中的关键环节。在张拉索膜结构中,索和膜材在初始状态下自身刚度极小,且缺乏明确的形状,无法独立承受荷载。因此,需要通过找形分析来确定在给定预应力分布以及控制点(通常为实际的支座点)坐标的条件下,索膜结构能够达到的平衡形态。这一平衡形态是结构在预应力作用下稳定存在的形状,对于保证结构的安全性和功能性至关重要。找形分析的目的主要体现在以下几个方面:首先,找形分析为后续的荷载分析和裁剪分析提供基础。只有准确确定了结构的初始平衡形态,才能在该形态的基础上,合理分析结构在各种外荷载作用下的力学性能,包括应力分布、位移变化等,从而判断结构是否满足设计要求,是否具有足够的承载能力和刚度。同时,初始平衡形态也是进行裁剪分析的依据,通过将该形态下的膜面预应力释放,并进行适当的剖分和展开,能够得到施工下料所需的平面膜片,确保施工安装后的膜面形状与设计预期相符。其次,找形分析有助于优化结构的力学性能。通过调整预应力分布和结构的初始形状,可以使结构在受力时更加均匀,避免出现应力集中现象,提高结构的整体稳定性和可靠性。此外,找形分析还能满足建筑造型的要求。张拉索膜结构以其独特的造型优势而备受青睐,找形分析能够根据建筑师的设计意图,确定合理的预应力分布和结构形状,实现建筑美学与结构力学的有机结合,创造出既美观又安全的建筑作品。例如,在设计一些具有独特曲面造型的体育场馆或文化建筑时,通过找形分析可以精确确定索膜结构的形状和预应力分布,使建筑在满足功能需求的同时,展现出独特的艺术魅力。总之,找形分析在张拉索膜结构设计中起着承上启下的重要作用,是确保结构性能和实现建筑效果的关键步骤。3.1.2相关力学原理张拉索膜结构的找形分析涉及多个力学领域的原理,其中材料力学和结构力学的相关原理在分析过程中起着核心作用。材料力学原理:膜材作为张拉索膜结构的主要组成部分,其受力特点对找形分析至关重要。膜材通常是由高强度的纤维织物基材和聚合物涂层构成的复合材料,具有轻质、高强、柔性的特点。在受力时,膜材主要承受拉力,几乎不能承受压力和弯矩。其抗拉强度在不同方向上可能存在差异,即具有各向异性的力学性能。例如,常见的PTFE膜材,其经向和纬向的抗拉强度可能会有所不同,这就要求在找形分析中充分考虑膜材的各向异性特性,准确计算膜材在不同方向上的应力和应变。此外,膜材在拉力作用下会发生较大的变形,但应变相对较小,属于大变形小应变问题。在找形分析中,需要采用合适的大变形理论和本构模型来描述膜材的力学行为,以准确模拟膜材在预应力作用下的变形和应力分布。对于索而言,索是一种仅能承受拉力的柔性构件,其抗拉刚度除了与自身的截面特性有关外,还受到自重、预拉力和外部荷载的影响。在实际工程中,索的垂度对其受力性能有显著影响,当索承受均布荷载时,其形状可能为抛物线或悬链线。在找形分析中,需要根据索的受力情况和几何形状,准确计算索的拉力和变形,以确保索在结构中发挥有效的承载作用。结构力学原理:在张拉索膜结构的找形分析中,结构力学的平衡原理是建立分析模型的基础。根据结构力学知识,结构在平衡状态下,其各个部分所受的外力和内力应满足平衡方程,即力的平衡和力矩的平衡。对于张拉索膜结构,需要建立考虑几何非线性的平衡方程,以反映结构在大变形情况下的力学行为。由于索膜结构在受力过程中会发生较大的位移和形状变化,其几何形状的改变会影响到结构的受力状态,因此在平衡方程中需要考虑几何非线性效应。在找形分析中,通常采用有限元方法将连续的索膜结构离散为有限个单元,通过建立单元的平衡方程,并将其组装成整体结构的平衡方程组,来求解结构的节点位移和内力。在求解过程中,需要考虑索膜结构的边界条件和预应力条件,以确保计算结果的准确性。例如,在处理膜与支承结构的连接节点时,需要根据实际的约束情况,合理施加边界条件,模拟节点的受力和变形行为。此外,在考虑预应力时,需要将预应力作为初应力施加到相应的单元上,以模拟预应力对结构的作用。3.2找形分析的关键要素3.2.1预应力分布预应力分布是张拉索膜结构找形分析中的关键要素之一,对结构的形态和性能有着深远的影响。在张拉索膜结构中,预应力是使结构获得初始刚度和稳定形状的核心因素。合理的预应力分布能够确保结构在各种荷载工况下保持良好的力学性能,避免出现膜面褶皱、索松弛等问题,从而保障结构的安全性和可靠性。不同的预应力分布会导致结构呈现出不同的平衡形态。例如,当在索膜结构的不同部位施加大小和方向各异的预应力时,结构的曲面形状会发生显著变化。在一个简单的索网式张拉索膜结构模型中,若对索网的某一区域施加较大的预应力,该区域的索会产生更大的拉力,从而使膜材在该区域被拉伸得更紧,导致膜面在该部分向上凸起,形成一个局部的高点;而在预应力较小的区域,膜面则相对较为平缓。这种因预应力分布差异而导致的结构形态变化,不仅影响着结构的外观造型,还直接关系到结构的受力性能。如果预应力分布不均匀,可能会导致结构局部应力集中,使膜材或索承受过大的拉力,降低结构的承载能力,甚至引发结构破坏。预应力分布还对结构的刚度和稳定性产生重要影响。适当增加预应力可以提高结构的整体刚度,使其在承受外荷载时变形更小。例如,在风荷载作用下,预应力充足的张拉索膜结构能够更好地抵抗风的作用力,减少膜面的振动和变形,从而保证结构的稳定性。相反,如果预应力不足,结构的刚度会降低,在风荷载或其他动力荷载作用下,膜面可能会产生较大的振动,甚至出现膜面被风掀起的危险情况。此外,合理的预应力分布还能增强结构的稳定性,防止结构在荷载作用下发生失稳现象。在一些大跨度的张拉索膜结构中,通过优化预应力分布,可以使结构在自重、雪荷载等作用下保持稳定的平衡状态,避免因局部失稳而导致整个结构的破坏。在实际工程中,确定合理的预应力分布是一个复杂的过程,需要综合考虑多种因素。首先,要根据建筑的功能要求和造型设计,确定结构的大致形状和尺寸,进而初步拟定预应力的分布方案。然后,通过数值模拟分析,如利用有限元软件对不同预应力分布方案下的结构进行力学性能分析,包括应力分布、位移变化、稳定性等,评估各种方案的优劣。同时,还需要考虑施工工艺和可行性,确保拟定的预应力分布方案在施工过程中能够顺利实现。例如,在施工过程中,张拉顺序和张拉力的控制对预应力分布的实现至关重要,如果施工方案不合理,可能会导致实际的预应力分布与设计预期存在较大偏差,影响结构的性能。因此,在确定预应力分布时,需要结构工程师、建筑师和施工人员密切合作,共同制定出既满足结构性能要求又便于施工的预应力分布方案。3.2.2控制点坐标控制点坐标在张拉索膜结构找形分析中起着举足轻重的作用,其确定方法直接关系到找形结果的准确性和可靠性。控制点通常是指索膜结构与支承结构或边界条件相连接的关键节点,这些节点的坐标决定了结构的边界位置和形状约束。准确确定控制点坐标是实现预期结构形态和保证结构力学性能的基础。在实际工程中,控制点坐标的确定需要依据具体的建筑设计和结构布置。对于一些简单的张拉索膜结构,控制点坐标可以根据建筑的几何形状和尺寸直接确定。例如,在一个矩形平面的张拉索膜结构中,如果其四个角点为控制点,那么可以根据矩形的边长和设计要求,精确计算出这四个角点在空间坐标系中的坐标。然而,对于复杂的建筑造型和不规则的结构布置,控制点坐标的确定则需要采用更为复杂的方法。在一些具有自由曲面造型的张拉索膜结构中,可能需要通过数字化建模技术,利用计算机辅助设计软件(CAD)或三维建模软件,根据建筑师的设计意图和结构力学原理,精确绘制出结构的三维模型,然后在模型中确定关键的控制点,并获取其坐标。此外,还可以结合现场实际测量数据,对通过建模得到的控制点坐标进行修正和验证,确保其准确性。控制点坐标对找形结果有着显著的影响。不同的控制点坐标会导致结构的初始形状和受力状态发生变化。在一个桅杆式张拉索膜结构中,若改变桅杆顶部控制点的坐标,即改变桅杆的高度或位置,会使连接在桅杆上的索和膜材的拉力分布发生改变,从而导致整个膜面的形状和应力分布发生变化。如果控制点坐标设置不合理,可能会使结构在找形过程中无法达到预期的平衡状态,出现膜面褶皱、索松弛等问题。此外,控制点坐标的精度也会影响找形结果的精度。在数值计算过程中,若控制点坐标存在较大误差,会在计算过程中逐渐累积,导致最终的找形结果与实际需求产生较大偏差。因此,在确定控制点坐标时,必须保证其准确性和精度,以确保找形分析的可靠性。四、找形分析方法4.1力密度法4.1.1力密度法原理力密度法是一种用于张拉索膜结构找形分析的重要方法,由Linkwitz和Schek于1971年首次提出。该方法的核心原理是通过引入力密度系数,将原本复杂的非线性平衡方程转化为线性方程组,从而大大简化了求解过程。在张拉索膜结构中,每个单元(索或膜单元)都存在一个力密度系数,其定义为单元内力与单元长度的比值。假设结构中有n个节点,对于每个节点i,根据静力平衡条件,在x、y、z三个方向上分别建立平衡方程。以x方向为例,节点i所受的外力和内力在x方向的合力为零,即:\sum_{j\inN_i}q_{ij}(x_j-x_i)+P_{ix}=0其中,N_i表示与节点i相连的节点集合,q_{ij}为节点i与节点j之间单元的力密度系数,x_i和x_j分别为节点i和节点j在x方向的坐标,P_{ix}为节点i在x方向所受的外荷载。同理,可以得到y方向和z方向的平衡方程。将所有节点的平衡方程组合在一起,就可以得到一个关于节点坐标的线性方程组。通过求解这个线性方程组,就能够得到满足平衡条件的节点坐标,进而确定索膜结构的初始形状。力密度法的优势在于,它将几何非线性问题转化为线性方程组的求解问题,避免了初始坐标的设定和非线性系统的收敛问题,使得计算过程更加简单易行。同时,通过合理选择力密度系数,可以有效地控制结构的形状和内力分布,满足不同的设计需求。例如,在设计一个马鞍形的张拉索膜结构时,可以通过调整不同区域的力密度系数,使膜面在不同方向上产生不同程度的拉伸,从而形成所需的马鞍形曲面。此外,力密度法还能够方便地处理各种边界条件,如固定边界、铰支边界等,只需在平衡方程中对边界节点的坐标进行相应的约束即可。4.1.2应用步骤与实例分析以一个简单的索膜结构为例,详细说明力密度法的应用步骤。该索膜结构为一个矩形平面,四个角点为固定边界,由索网和膜材组成。首先,根据结构的拓扑关系,确定节点和单元的编号,并建立拓扑矩阵。拓扑矩阵描述了节点与单元之间的连接关系,对于每个单元,明确其两端所连接的节点编号。在这个矩形索膜结构中,假设将索网划分为若干个单元,每个单元的两端与相应的节点相连,通过这种方式确定拓扑矩阵。然后,给定结构的边界条件,即四个角点的坐标固定。这是因为在实际工程中,固定边界能够为结构提供稳定的支撑,确保结构在受力时的稳定性。接着,根据设计要求,假设各单元的力密度系数。力密度系数的选择直接影响结构的形状和内力分布,在这个例子中,根据对最终结构形状的预期,初步设定各单元的力密度系数。例如,如果希望膜面在某个方向上更加紧绷,就可以适当增大该方向上单元的力密度系数。基于上述设定,根据力密度法的原理,建立节点平衡方程。如前文所述,对于每个节点,在x、y、z三个方向上分别列出平衡方程,将所有节点的平衡方程组合成线性方程组。在这个矩形索膜结构中,对每个节点按照力密度法的公式进行平衡方程的推导,然后将这些方程联立起来,形成一个大型的线性方程组。使用合适的数值方法求解该线性方程组,得到节点坐标。在实际计算中,可以采用高斯消元法、共轭梯度法等数值方法来求解线性方程组。以共轭梯度法为例,它是一种迭代求解线性方程组的方法,通过不断迭代更新解向量,逐步逼近方程组的精确解。在求解过程中,根据设定的收敛准则,判断迭代是否收敛。收敛准则通常是根据解向量的变化量或者残差的大小来确定的。例如,当解向量在相邻两次迭代中的变化量小于某个预设的阈值时,或者残差小于一定的精度要求时,认为迭代收敛,此时得到的解即为满足平衡条件的节点坐标。根据求解得到的节点坐标,绘制索膜结构的初始形状,并分析其合理性。在得到节点坐标后,可以使用绘图软件或者编程工具,将节点连接起来,绘制出索膜结构的初始形状。然后,对绘制出的形状进行分析,检查是否符合设计预期。例如,观察膜面的平整度、曲率变化等,判断是否存在局部凸起或凹陷等不合理的情况。同时,还可以进一步分析结构的内力分布,通过计算各单元的内力,检查是否存在应力集中的区域。如果发现形状或内力分布不合理,可以调整力密度系数,重新进行计算,直到得到满意的结果。在这个实例中,通过力密度法的应用,成功得到了索膜结构的初始形状。从计算结果来看,膜面形状较为规则,满足设计要求。通过对内力分布的分析,发现各单元的内力分布相对均匀,没有出现明显的应力集中现象。这表明力密度法在该索膜结构的找形分析中是有效的,能够准确地确定结构的初始形状和合理的内力分布。然而,在实际应用中,力密度法也存在一定的局限性。对于一些复杂的索膜结构,如具有不规则边界或复杂拓扑关系的结构,力密度系数的选择可能较为困难,需要通过多次试算和调整才能得到满意的结果。此外,力密度法假设结构处于小变形状态,对于大变形问题的处理能力相对有限。在实际工程中,需要根据具体情况,综合考虑各种因素,选择合适的找形分析方法。4.2动力松弛法4.2.1动力松弛法原理动力松弛法是一种专门用于求解非线性系统平衡状态的数值方法,它能够从任意假定的不平衡状态开始迭代,最终得到平衡状态。该方法最早由A.S.Day提出并应用于流体计算中,后经Barnes推广运用于预应力索网结构和膜结构的找形分析。动力松弛法的基本原理是基于达朗贝尔原理,将静力问题转化为动力问题进行分析,因此也被称为伪瞬态分析方法。具体而言,动力松弛法将结构离散为空间节点位置上具有一定虚拟质量的质点。在设定的非平衡构形下,这些离散的质点会受到不平衡力的作用,从而产生沿不平衡力方向的运动。从宏观上看,结构的总体不平衡力会随着质点的运动而趋于减小。当体系的动能达到极大值时,所有的速度分量被设定为零。此时,在当前不平衡力的作用下,质点重新开始运动。如此反复迭代,直到结构的动能趋近于零,体系达到静力平衡点。这一过程的实质是利用动力的方法来解决静力问题。在数学表达上,根据达朗贝尔原理,以中心有限差分形式表示,t时刻节点i在x方向的运动可表示为:m_i\frac{v_{i,x}^{t+\Deltat}-v_{i,x}^{t-\Deltat}}{2\Deltat}=R_{i,x}^t-C_{i,x}v_{i,x}^t其中,m_i为节点i的虚拟质量,v_{i,x}^t为节点i在t时刻x方向的速度,R_{i,x}^t是节点i在t时刻x方向的不平衡力,C_{i,x}是节点i在x方向的阻尼系数,\Deltat为时间步长。通过不断迭代求解这个方程,调整节点的速度和位置,使结构逐渐达到平衡状态。在每一个时间步,对离散体系的每一个节点的振动过程进行追踪,记录节点的位移、速度和加速度等信息。当节点的不平衡力小于设定的收敛精度时,认为结构达到了平衡状态,此时的节点坐标即为结构的平衡形状。例如,在一个简单的索膜结构找形分析中,假设初始状态下膜面存在较大的不平衡力,通过动力松弛法,随着迭代的进行,膜面节点在不平衡力和虚拟阻尼的作用下不断调整位置,膜面逐渐变形,不平衡力逐渐减小,最终达到平衡状态,得到稳定的膜面形状。4.2.2应用优势与局限性动力松弛法在张拉索膜结构找形分析中具有显著的应用优势。首先,该方法能够处理复杂的边界条件和大变形问题。由于动力松弛法是从任意初始非平衡状态开始迭代,因此对于具有不规则边界或复杂约束条件的索膜结构,它无需像一些其他方法那样对边界条件进行复杂的处理,能够较为方便地求解结构的平衡形状。在分析具有多个不同高度支承点的索膜结构时,动力松弛法可以直接根据给定的边界条件进行迭代计算,而不需要对边界条件进行特殊的简化或近似处理。同时,对于索膜结构在找形过程中出现的大变形情况,动力松弛法能够通过迭代逐步调整结构的形状,准确地捕捉结构的非线性变形行为,这是一些基于小变形假设的方法所无法比拟的。例如,在分析一些具有复杂曲面造型的张拉索膜结构时,膜面在预应力作用下会发生较大的变形,动力松弛法能够有效地处理这种大变形问题,得到准确的平衡形状。其次,动力松弛法在迭代过程中不需要形成刚度矩阵,这大大节约了刚度矩阵的形成和分解时间。刚度矩阵的形成和分解在结构分析中通常是计算量较大的部分,尤其是对于大型复杂结构。动力松弛法避免了这一过程,使得计算效率得到显著提高。此外,该方法还可以在计算过程中方便地修改结构的拓扑和边界条件。在实际工程中,有时需要对结构的拓扑或边界条件进行调整,以满足不同的设计需求或应对施工过程中的变化。动力松弛法能够很好地适应这种情况,通过简单地修改相关参数,即可重新进行迭代计算,得到新的平衡形状。例如,在施工过程中,如果需要改变索膜结构的某个支承点的位置或约束条件,利用动力松弛法可以快速地对结构进行重新分析,确定新的平衡状态。然而,动力松弛法也存在一定的局限性。其迭代步骤往往较多,这导致计算时间相对较长。尤其是对于大型复杂的索膜结构,为了使结构达到收敛的平衡状态,可能需要进行大量的迭代计算。在分析一个大型体育场馆的张拉索膜结构时,由于结构规模较大,节点和单元数量众多,动力松弛法可能需要进行数千次甚至数万次的迭代才能得到满意的结果,这使得计算过程较为耗时。此外,动力松弛法的计算结果对虚拟质量和阻尼参数的选择较为敏感。如果这些参数选择不当,可能会导致计算结果不准确或不收敛。不同的虚拟质量和阻尼参数会影响结构的运动特性和收敛速度,因此需要通过经验或试算来确定合适的参数值。在实际应用中,这增加了计算的复杂性和不确定性。例如,在对一个索膜结构进行找形分析时,若虚拟质量设置过大,可能会导致结构在迭代过程中运动过于剧烈,难以收敛;若虚拟质量设置过小,则可能使迭代速度过慢,计算效率低下。同样,阻尼参数的不合理选择也会对计算结果产生不利影响。4.3非线性有限元法4.3.1有限元理论基础有限元法作为一种强大的数值分析方法,在工程领域得到了广泛的应用,尤其在张拉索膜结构的分析中发挥着关键作用。其基本原理是将连续的结构离散为有限个单元,通过对每个单元进行分析,建立单元的平衡方程,然后将这些单元方程组装成整体结构的平衡方程,从而求解结构的力学响应。在有限元分析中,首先需要对结构进行离散化处理。对于张拉索膜结构,将索和膜离散为不同类型的单元,如索单元和膜单元。索单元通常采用只拉不压的杆单元模型,考虑索的高柔性和几何非线性特性,其抗拉刚度不仅与自身截面特性有关,还受到自重、预拉力和外部荷载的影响。膜单元则根据其受力特点和几何形状,可选用三角形平面单元或三角形曲面单元等。三角形平面单元简单实用,能够满足一般的计算精度要求,通常选用三节点平面常应变单元或三节点平面等参元,考虑节点在x、y、z三个方向的位移,计算面内的正应力和剪应力。而三角形曲面单元能够更好地反映膜结构的真实几何形状,提高拟合曲面边界的能力,减少几何离散带来的误差,计算精度较高。在单元分析阶段,基于虚功原理建立单元的平衡方程。对于索单元,根据其受力特点,考虑轴向拉力和几何非线性效应,推导单元的平衡方程。对于膜单元,考虑膜面的拉伸、弯曲和剪切变形,以及几何非线性的影响,建立相应的平衡方程。在建立平衡方程时,需要考虑材料的本构关系,由于索膜材料通常具有非线性和各向异性的特点,需要采用合适的本构模型来描述其力学行为。在实际计算中,虽然膜材料的材料非线性和各向异性较为显著,但由于很难精确表达其非线性本构关系,一般采用线性的本构关系。将所有单元的平衡方程组装成整体结构的平衡方程,得到一个以节点位移为未知量的非线性方程组。由于索膜结构在受力过程中会发生较大的变形,其几何形状的改变会影响到结构的受力状态,因此这个方程组是非线性的。求解这个非线性方程组需要采用合适的迭代算法,如牛顿-拉夫逊法等。牛顿-拉夫逊法通过不断迭代,逐步逼近非线性方程组的解,在每一次迭代中,根据当前的节点位移和内力状态,修正方程组的系数矩阵,直到满足收敛条件为止。收敛条件通常根据节点位移的变化量、内力的变化量或残差的大小来确定。例如,当节点位移在相邻两次迭代中的变化量小于某个预设的阈值,或者内力的变化量小于一定的精度要求,或者残差小于给定的误差范围时,认为迭代收敛,此时得到的节点位移即为结构在给定荷载和边界条件下的真实位移。通过求解得到的节点位移,可以进一步计算结构的应力、应变等力学响应,从而对结构的性能进行评估。4.3.2在张拉索膜结构找形中的应用以某大型展览馆的张拉索膜结构为例,深入探讨非线性有限元法在张拉索膜结构找形中的具体应用。该展览馆的索膜结构具有复杂的曲面造型和边界条件,采用非线性有限元法进行找形分析具有重要的实际意义。在应用非线性有限元法时,选用合适的索单元和膜单元类型是关键步骤之一。针对该结构的特点,索单元采用考虑几何非线性的曲线索单元,能够准确模拟索在受力过程中的大变形和垂度变化。膜单元则选用三角形曲面等参元,以更好地拟合膜面的复杂曲面形状,提高计算精度。在建立有限元模型时,精确模拟结构的边界条件至关重要。根据实际工程情况,确定膜与支承结构的连接方式为铰接,在有限元模型中通过设置相应的约束条件来模拟这种连接方式。同时,考虑到支承结构的刚度对索膜结构的影响,将支承结构简化为梁单元,并与索膜单元进行协同分析,以更真实地反映结构的受力状态。在找形分析过程中,充分考虑材料非线性和几何非线性的影响。对于材料非线性,虽然膜材的非线性本构关系较为复杂,但在实际计算中采用了简化的线性本构关系,并通过适当调整材料参数来近似考虑其非线性特性。对于几何非线性,采用更新拉格朗日(U.L)列式法,该方法能够准确描述结构在大变形过程中的几何关系变化,将结构的变形和内力迭代求解,以确保计算结果的准确性。通过多次迭代计算,最终得到了该展览馆张拉索膜结构的合理初始形状。从找形结果来看,膜面形状符合设计预期,应力分布较为均匀,没有出现明显的应力集中现象。例如,在膜面的关键部位,如索与膜的连接点附近,应力水平在材料的允许范围内,且分布较为平滑,这表明找形结果能够满足结构的力学性能要求。为了验证找形结果的准确性,将非线性有限元法的计算结果与实际工程中的模型试验数据进行对比分析。试验结果表明,计算得到的膜面形状和应力分布与试验数据基本吻合,误差在合理范围内。这充分证明了非线性有限元法在该张拉索膜结构找形分析中的有效性和可靠性。同时,通过与其他找形分析方法,如力密度法和动力松弛法的结果进行对比,发现非线性有限元法在处理复杂边界条件和大变形问题时具有明显的优势,能够得到更精确的找形结果。五、张拉索膜结构计算5.1计算模型的建立5.1.1单元选择与特性在建立张拉索膜结构的计算模型时,合理选择单元类型是确保计算准确性的关键。索单元和膜单元作为主要的单元类型,各自具有独特的力学特性。索单元是一种仅能承受拉力的柔性杆件,其抗拉刚度除了与自身的截面特性有关外,还受到自重、预拉力和外部荷载的显著影响。目前,常见的索单元力学模型主要有以下几种类型:只拉不压直杆单元:将索单元视作只拉不压直杆单元进行处理,充分考虑索单元的高柔性,把应变的几何非线性关系代入单元的有限元方程。由于索单元上的均布荷载(包含自重)对结构的非线性计算影响较大,一般需对索单元的材料弹性模量E进行修正,修正后的等效弹性模量E_{eq}与索的拉力和作用在索上的均布荷载相关。不过,采用这种索单元的力学模型时,只有当索内预张力远远大于自重引起的张力时,才能获得精确的计算结果。例如,在一些小型的张拉索膜结构中,当索的长度较短且预张力较大时,采用只拉不压直杆单元能够较为准确地模拟索的受力性能。荷载沿投影均布的曲索单元:该单元是考虑了由自重引起的拉索垂度的影响而建立的索单元几何非线性有限元力学模型。它认为索单元上的均布荷载是沿索长投影均布的,能够计算任意荷载、任意挠度、任意形状的索结构,并且不需要划分过多的单元就能满足计算要求。在一些大跨度的索膜结构中,如大型体育场馆的索网结构,荷载沿投影均布的曲索单元能够较好地模拟索在自重作用下的垂度变化,提高计算精度。荷载沿索长均布的曲索单元:这种单元被认为索单元上的均布荷载是沿索长均匀分布而建立的索单元非线性有限元力学模型,一般称为悬链索单元。悬链索单元能够更精确地模拟索在自重作用下的真实受力状态,尤其适用于对索的受力性能要求较高的工程。在一些对结构安全性要求极高的桥梁拉索结构中,常采用悬链索单元进行计算分析。膜结构是一种只能抗拉,不能抗弯和抗压的柔性结构,其抗拉刚度是通过表面张拉形成的,具有较强的几何非线性效应。采用有限元理论分析索膜结构时,常采用的膜单元模型主要有:三角形平面单元:这是目前普遍选用的膜单元有限元力学模型,具有简单、实用的特点,能够满足一般的计算精度要求。通常选用三节点平面常应变单元或三节点平面等参元,考虑节点在x、y、z三个方向的位移,计算面内的正应力和剪应力,利用更新拉格朗日(U.L)列式法推导出膜单元的几何非线性刚度矩阵。在一些形状较为规则的膜结构中,如矩形平面的膜结构,三角形平面单元能够快速、准确地计算膜面的应力和变形。三角形曲面单元:采用三角形曲面单元作为膜单元力学模型,能够更好地反映膜结构的真实几何形状,提高拟合曲面边界的能力,减少几何离散带来的误差,计算精度较高,变形结果更符合真实情况。文献中常采用六节点三角形曲面等参元,应变的线性部分引入了z向位移,并且考虑了单元的曲率和扭率的影响。经过三次坐标变换,利用U.L列式法推导出膜单元几何非线性刚度矩阵。在一些具有复杂曲面造型的膜结构中,如双曲抛物面的膜结构,三角形曲面单元能够更准确地模拟膜面的形状和受力性能。5.1.2模型简化与假设为了便于进行张拉索膜结构的计算分析,通常需要对实际结构进行一定的简化和假设,这些简化和假设在保证计算结果准确性的前提下,能够有效提高计算效率。在材料特性方面,虽然膜材料具有明显的材料非线性和各向异性,且单向受拉和双向受拉以及不同经纬应力时,其应力和应变关系都有所不同。但由于精确表达膜材料的非线性本构关系存在较大困难,在实际计算中,一般采用线性的本构关系。通过对材料参数的合理取值,在一定程度上近似考虑其非线性和各向异性特性。例如,在计算中适当调整弹性模量和泊松比等参数,以模拟膜材料在不同受力状态下的力学性能。同时,假设膜材和索材均为连续、均匀且各向同性的材料,忽略材料内部的微观缺陷和不均匀性对结构性能的影响。这样的假设在大多数情况下能够满足工程计算的精度要求,并且大大简化了计算过程。在结构几何方面,对于一些复杂的张拉索膜结构,为了便于建模和计算,可能会对结构的边界条件进行适当简化。在实际工程中,膜与支承结构的连接节点可能具有复杂的力学行为,但在计算模型中,通常将其简化为铰接或固接等简单的连接方式。假设支承结构具有足够的刚度,在分析索膜结构时,不考虑支承结构的变形对索膜结构的影响。这样的简化能够使计算模型更加清晰,便于求解,但在实际应用中,需要根据具体情况对简化后的模型进行验证和修正。此外,对于一些形状复杂的膜面,在建模时可能会采用近似的几何形状进行代替。在处理具有复杂曲面的膜结构时,可能会将其简化为若干个平面或简单曲面的组合,以方便划分单元和进行计算。这种简化方式在一定程度上会引入误差,但通过合理的单元划分和计算方法,可以将误差控制在可接受的范围内。5.2计算流程与要点5.2.1荷载工况考虑在张拉索膜结构的计算过程中,全面且合理地考虑不同的荷载工况是确保结构安全性和可靠性的关键环节。张拉索膜结构在实际使用过程中会受到多种荷载的作用,这些荷载的组合方式和作用大小对结构的力学性能有着显著影响。其中,自重、风荷载和雪荷载是最为常见且重要的荷载工况。自重作为结构自身所承受的永久荷载,对结构的初始形态和内力分布有着基础性的影响。膜材和索材虽然相对轻质,但在大跨度的张拉索膜结构中,其自重的累积效应不容忽视。在计算过程中,需要准确确定膜材和索材的单位重量,并根据结构的几何形状和尺寸,精确计算自重产生的荷载分布。在一个大型体育场馆的张拉索膜结构中,膜材的自重会使膜面产生一定的下垂变形,而索材的自重则会影响索的拉力分布和垂度。这种自重引起的变形和内力分布变化,会对结构的初始平衡状态产生影响,进而影响结构在其他荷载工况下的力学性能。因此,在进行找形分析和荷载计算时,必须充分考虑自重的作用,确保结构在初始状态下的稳定性和合理性。风荷载是张拉索膜结构设计中需要重点考虑的可变荷载之一,其对结构的影响具有复杂性和不确定性。风荷载的大小和方向会随着时间和空间的变化而变化,且风在膜面和索表面的作用呈现出复杂的流体力学特性。膜面的形状和曲率会影响风的流动形态,从而导致风荷载在膜面上的分布不均匀。在一些复杂曲面的张拉索膜结构中,膜面的凸起和凹陷部位会形成不同的风压力区,有的区域可能受到较大的正风压作用,而有的区域则可能受到负风压(吸力)的作用。这种不均匀的风荷载分布可能会导致膜面局部应力集中,甚至引发膜面的振动和破坏。此外,风荷载还可能引发结构的动力响应,如膜面的颤振等。因此,在计算风荷载对张拉索膜结构的作用时,需要采用专门的风工程方法,如风洞试验、数值模拟等,准确确定风荷载的大小、分布和动力特性。通过风洞试验,可以模拟实际的风场环境,测量不同风向和风速下结构表面的风压分布,为结构设计提供可靠的数据支持。在数值模拟方面,采用计算流体力学(CFD)方法,可以对风在结构表面的流动进行数值模拟,分析风荷载的分布规律和结构的动力响应。同时,在设计中还需要根据相关的建筑结构设计规范,考虑风荷载的组合系数和分项系数,以确保结构在风荷载作用下的安全性。雪荷载也是张拉索膜结构设计中不可忽视的荷载工况,尤其在寒冷地区或冬季降雪量大的地区,雪荷载可能成为控制结构设计的主要荷载之一。雪荷载的大小与当地的积雪深度、雪的密度以及屋面的坡度等因素密切相关。在计算雪荷载时,需要根据当地的气象资料和建筑结构设计规范,确定雪荷载的标准值。对于不同形状的张拉索膜结构,雪荷载在膜面上的分布也存在差异。在膜面的凹陷区域,雪容易堆积,导致局部雪荷载增大;而在膜面的凸起区域,雪的堆积相对较少。这种不均匀的雪荷载分布可能会使膜面产生过大的变形和应力,甚至导致膜面的破坏。此外,雪荷载还可能与风荷载等其他荷载组合作用于结构,进一步增加结构的受力复杂性。因此,在考虑雪荷载时,需要准确计算雪荷载的大小和分布,并合理考虑其与其他荷载的组合效应。在设计中,可以通过优化膜面形状、设置排水坡度等措施,减少雪荷载在膜面上的堆积,降低雪荷载对结构的不利影响。同时,还需要根据结构的受力特点和承载能力,合理确定结构的安全储备,确保结构在雪荷载作用下的可靠性。5.2.2计算结果分析与验证以某实际的张拉索膜结构工程为例,深入剖析计算结果的分析与验证过程。该工程为一座大型展览馆的张拉索膜结构,采用非线性有限元法进行计算分析。通过计算,得到了结构在多种荷载工况下的应力、应变和位移等关键数据。从应力分布结果来看,在自重和预应力作用下,膜面和索的应力分布较为均匀,大部分区域的应力水平处于材料的允许范围内。然而,在膜与支承结构的连接节点处以及索的锚固点附近,出现了一定程度的应力集中现象。这些区域的应力值明显高于其他部位,需要在设计和施工中特别关注,采取加强措施,如增加节点处的连接件强度、优化锚固方式等,以确保结构的安全。在应变方面,计算结果显示膜面的应变分布与应力分布具有一定的相关性。在应力较大的区域,应变也相对较大,但整体应变水平在材料的弹性范围内。这表明结构在正常使用荷载下,能够保持良好的弹性性能,不会发生明显的塑性变形。通过对位移结果的分析,发现结构在风荷载和雪荷载作用下,膜面会产生一定的位移。在强风作用下,膜面的最大位移出现在膜面的中心区域,位移量达到了设计允许的限值。这说明结构在风荷载作用下的刚度能够满足要求,但仍需要进一步评估位移对结构使用功能和美观的影响。在雪荷载作用下,膜面的位移分布与雪荷载的分布密切相关,雪堆积较多的区域,膜面的位移也较大。为了验证计算结果的准确性,将计算结果与实际工程中的监测数据进行了对比分析。在工程施工完成后,在膜面和索上布置了多个应力、应变和位移监测点,对结构在实际使用过程中的力学性能进行实时监测。监测结果表明,计算得到的应力、应变和位移值与监测数据基本吻合,误差在合理范围内。在膜面的某一监测点,计算得到的应力值为XMPa,监测得到的应力值为(X\pm\DeltaX)MPa,其中\DeltaX为误差范围,满足工程设计的精度要求。这充分证明了采用非线性有限元法进行张拉索膜结构计算的有效性和可靠性。同时,通过与其他类似工程的经验数据进行对比,也进一步验证了计算结果的合理性。在与另一座规模和结构形式相似的展览馆张拉索膜结构工程的对比中,发现两者在相同荷载工况下的应力、应变和位移分布规律具有相似性,这表明计算结果具有一定的普遍性和参考价值。六、案例分析6.1某大型会展中心张拉索膜结构6.1.1项目概况某大型会展中心坐落于城市核心区域,作为城市重要的经济文化交流场所,承担着举办各类大型展览、会议及活动的重要任务。该会展中心占地面积达[X]平方米,总建筑面积为[X]平方米,其规模宏大,功能齐全。主体建筑由多个展厅和公共空间组成,展厅内部空间开阔,无柱设计,为各类展览展示提供了充足的空间。公共空间包括宽敞的走廊、休息区和餐饮区等,满足了参观者的多样化需求。会展中心的张拉索膜结构采用了索网式与脊索式相结合的创新结构形式。索网作为主要的受力体系,由高强度的钢索相互交叉编织而成,犹如一张坚固的“大网”,均匀地分布在整个屋面,有效地承受着膜材传来的荷载,并将其传递到支承结构上。脊索则沿着屋面的主要受力方向布置,进一步增强了结构的稳定性和承载能力。膜材选用了先进的PTFE膜材,这种膜材具有高强度、耐久性好、自洁性强和透光性优良等特点。其高强度特性能够确保在各种复杂荷载工况下,膜面不会发生破裂或过度变形;良好的耐久性使其能够长期抵御自然环境的侵蚀,减少维护成本;自洁性强的特点则保证了膜面始终保持清洁美观,无需频繁清洗;优良的透光性为展厅内部提供了充足的自然采光,营造出明亮、舒适的展览空间。从建筑功能需求来看,会展中心需要具备大跨度、无柱空间,以满足不同规模和类型展览的场地布置需求。张拉索膜结构的应用恰好满足了这一要求,其大跨度的特性使得展厅内部空间开阔,无柱遮挡,方便展品的展示和参观者的流动。同时,由于会展中心人流量大,对结构的安全性和稳定性要求极高。张拉索膜结构通过合理的预应力设计和精确的找形分析,确保了结构在各种荷载作用下的安全性和稳定性。此外,会展中心作为城市的标志性建筑之一,对建筑造型也有较高的要求。该会展中心的张拉索膜结构呈现出独特的曲面造型,线条流畅,富有动感,与周围的城市环境相融合,成为了城市的一道亮丽风景线。6.1.2找形分析与计算过程在对该会展中心张拉索膜结构进行找形分析时,综合考虑结构的复杂性和设计要求,选用了非线性有限元法。这种方法能够精确模拟索膜结构在各种工况下的力学行为,尤其是对于复杂边界条件和大变形问题具有较强的处理能力,能够满足会展中心张拉索膜结构的找形分析需求。在建立有限元模型时,精心选择了合适的索单元和膜单元。索单元采用考虑几何非线性的曲线索单元,这种单元能够准确模拟索在受力过程中的大变形和垂度变化,充分考虑索的高柔性以及自重、预拉力和外部荷载对其抗拉刚度的影响。膜单元则选用三角形曲面等参元,它能够更好地拟合膜面的复杂曲面形状,提高拟合曲面边界的能力,减少几何离散带来的误差,从而提高计算精度。在定义材料属性时,根据膜材和索材的实际性能参数,准确输入相关数据。对于膜材,虽然其具有材料非线性和各向异性的特点,但由于精确表达其非线性本构关系较为困难,在实际计算中采用了线性的本构关系,并通过合理调整材料参数来近似考虑其非线性和各向异性特性。对于索材,考虑其抗拉刚度与自身截面特性、自重、预拉力和外部荷载的关系,准确设定材料参数。同时,精确模拟结构的边界条件,根据实际工程中膜与支承结构的连接方式,将其定义为铰接或固接等相应的约束条件,确保模型能够真实反映结构的实际受力状态。在找形分析过程中,充分考虑材料非线性和几何非线性的影响。对于材料非线性,如前文所述,采用简化的线性本构关系并调整材料参数来近似处理。对于几何非线性,采用更新拉格朗日(U.L)列式法。该方法能够准确描述结构在大变形过程中的几何关系变化,将结构的变形和内力迭代求解。在迭代过程中,根据结构的受力状态和变形情况,不断修正节点坐标和单元刚度矩阵,逐步逼近结构的真实平衡状态。经过多次迭代计算,最终得到了该会展中心张拉索膜结构的合理初始形状。从计算结果来看,膜面形状符合设计预期,呈现出流畅的曲面造型,满足建筑美学要求。应力分布较为均匀,大部分区域的应力水平处于材料的允许范围内,仅在膜与支承结构的连接节点处以及索的锚固点附近出现了一定程度的应力集中现象。针对这些应力集中区域,在后续设计中采取了加强措施,如增加节点处的连接件强度、优化锚固方式等,以确保结构的安全。6.1.3结果分析与实际应用效果对找形和计算结果进行深入分析,结果显示膜面应力分布整体较为均匀,大部分区域的应力值在膜材的设计强度范围内,这表明结构的受力性能良好,能够满足承载要求。然而,在膜与支承结构的连接节点处以及索的锚固点附近,应力值明显高于其他区域。在连接节点处,由于膜材与支承结构的刚度差异较大,力的传递较为复杂,导致应力集中。在索的锚固点附近,索的拉力在此处急剧变化,也容易产生应力集中现象。针对这些应力集中区域,采取了有效的加强措施。在连接节点处,增加了节点连接件的强度和尺寸,采用高强度的螺栓和连接件,以提高节点的承载能力。同时,优化节点的构造形式,使力的传递更加均匀,减少应力集中。在索的锚固点附近,增加了锚固板的面积,分散索的拉力,避免局部应力过大。此外,还对锚固点进行了特殊的处理,如增加锚固点的数量、采用特殊的锚固方式等,以确保锚固的可靠性。将找形分析结果与实际建成效果进行对比,发现两者高度吻合。实际建成的会展中心张拉索膜结构形态与找形分析得到的初始形状一致,膜面平整,无明显褶皱和变形。这充分验证了找形分析方法和计算过程的准确性和可靠性。在实际使用过程中,该会展中心的张拉索膜结构表现出了良好的性能。膜材的自洁性使得膜面始终保持清洁,减少了维护成本。透光性良好的膜材为展厅内部提供了充足的自然采光,降低了人工照明的能耗,营造出了舒适的展览环境。同时,张拉索膜结构的大跨度特性为展览提供了开阔的空间,满足了不同规模展览的需求。在多次大型展览活动中,该会展中心的张拉索膜结构经受住了考验,未出现任何结构安全问题,得到了用户的高度认可。通过对该案例的分析,总结出在张拉索膜结构设计和施工过程中,精确的找形分析和计算是确保结构性能的关键。在设计阶段,应充分考虑结构的复杂性和各种工况,选择合适的找形分析方法和计算模型,准确模拟结构的力学行为。在施工过程中,要严格按照设计要求进行施工,确保预应力的施加准确无误,节点连接牢固可靠,以保证结构的实际性能与设计预期相符。6.2某体育场馆张拉索膜结构6.2.1结构特点与设计要求某体育场馆作为举办各类大型体育赛事和活动的重要场所,其建筑规模宏大,占地面积达[X]平方米,可容纳观众数量高达[X]人。该体育场馆的张拉索膜结构呈现出独特的特点。从结构形式来看,它采用了桅杆式与脊索式相结合的创新结构形式。桅杆式结构通过高耸的桅杆来支承膜材,钢索将膜材与桅杆连接,并施加预应力,使膜材形成稳定的曲面。脊索式结构则以脊索和谷索作为主要的承重构件,膜材张拉在脊索和谷索之间,进一步增强了结构的稳定性和承载能力。这种结合的结构形式不仅能够满足体育场馆大跨度、大空间的功能需求,还能营造出独特的建筑造型,展现出体育场馆的雄伟气势。在材料选择方面,膜材选用了性能卓越的PTFE膜材。PTFE膜材具有高强度、耐久性好、自洁性强和透光性优良等特点。其高强度特性能够确保在各种复杂荷载工况下,膜面不会发生破裂或过度变形,为体育场馆的安全使用提供了可靠保障。良好的耐久性使其能够长期抵御自然环境的侵蚀,减少维护成本,延长结构的使用寿命。自洁性强的特点则保证了膜面始终保持清洁美观,无需频繁清洗,降低了维护工作量。优良的透光性为体育场馆内部提供了充足的自然采光,营造出明亮、舒适的比赛和观赛空间,同时减少了人工照明的使用,实现了节能环保。索材则采用高强度的钢索,其抗拉强度高,能够有效地承受拉力,与膜材协同工作,共同承担荷载。基于体育场馆的功能和使用要求,对张拉索膜结构提出了严格的设计要求。在安全性方面,要求结构能够承受各种可能出现的荷载,包括自重、风荷载、雪荷载以及人群荷载等,确保在任何情况下都不会发生结构破坏或失稳。在使用功能方面,需要为观众提供良好的观赛视野,避免膜结构对视线造成遮挡。同时,要保证场馆内部的通风和采光良好,为运动员和观众创造舒适的环境。在建筑造型方面,要求张拉索膜结构能够与体育场馆的整体风格相融合,展现出独特的建筑美学,成为城市的标志性建筑之一。6.2.2找形与计算结果评估在对该体育场馆张拉索膜结构进行找形分析时,选用了动力松弛法。动力松弛法能够处理复杂的边界条件和大变形问题,且在迭代过程中不需要形成刚度矩阵,计算效率较高,适合该体育场馆复杂的结构形式。通过动力松弛法的计算,得到了结构的初始形状和预应力分布。从找形结果来看,膜面形状符合设计预期,呈现出流畅的曲面造型,能够满足建筑美学要求。膜面的应力分布较为均匀,大部分区域的应力值在膜材的设计强度范围内,表明结构的受力性能良好。然而,在膜与支承结构的连接节点处以及索的锚固点附近,出现了应力集中现象。这些区域的应力值明显高于其他区域,需要在设计和施工中采取加强措施,以确保结构的安全。在计算过程中,考虑了多种荷载工况,包括自重、风荷载和雪荷载等。通过对不同荷载工况下结构的力学性能进行分析,得到了结构的应力、应变和位移分布情况。在自重作用下,结构的变形和应力分布较为均匀。在风荷载作用下,膜面的迎风面和背风面出现了不同程度的压力和吸力,导致膜面应力分布发生变化。在雪荷载作用下,膜面的凹陷区域积雪较多,产生了较大的压力,使膜面的应力和位移增大。通过对计算结果的分析,评估了结构在不同荷载工况下的安全性和适用性。结果表明,在正常使用荷载工况下,结构的各项性能指标均满足设计要求。但在极端荷载工况下,如强风、暴雪等情况下,结构的某些部位可能会出现应力超限或变形过大的情况。因此,需要进一步优化结构设计,提高结构的抗风、抗雪能力,确保结构在各种情况下的安全性。6.2.3施工过程中的监测与调整在体育场馆张拉索膜结构的施工过程中,对结构进行实时监测是确保施工质量和结构安全的重要措施。监测内容主要包括索的拉力、膜面的应力和位移等参数。在索的拉力监测方面,采用了高精度的拉力传感器,将其安装在索的关键部位,实时测量索的拉力变
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中国呼叫器行业市场前景预测及投资价值评估分析报告
- 中国复膜沙行业市场前景预测及投资价值评估分析报告
- 2025年山东省滨州市中考道法真题卷含答案解析
- 财务部半年度工作总结及下半年工作计划
- 高速公路隧道专项施工方案设计
- 环境培训教学课件
- 社区小区IPC高清网络监控系统设计方案
- 2025年新版半导体厂面试题目及答案
- 2025年智能制造工程(工业互联网应用与开发)试卷及答案
- 2025年舞台剧表演考试题及答案
- 室内消火栓的检查内容、标准及检验程序
- DB35T 2136-2023 茶树病害测报与绿色防控技术规程
- 日文常用汉字表
- QC003-三片罐206D铝盖检验作业指导书
- 舞台机械的维护与保养
- 运输工具服务企业备案表
- 医院药房医疗废物处置方案
- 高血压达标中心标准要点解读及中心工作进展-课件
- 金属眼镜架抛光等工艺【省一等奖】
- 《药品经营质量管理规范》的五个附录
- 试论如何提高小学音乐课堂合唱教学的有效性(论文)
评论
0/150
提交评论