版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届山东省潍坊市青州二中高二上数学期末质量跟踪监视模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.德国数学家莱布尼茨是微积分的创立者之一,他从几何问题出发,引进微积分概念.在研究切线时认识到,求曲线的切线的斜率依赖于纵坐标的差值和横坐标的差值,以及当此差值变成无限小时它们的比值,这也正是导数的几何意义.设是函数f(x)的导函数,若,对,且.总有,则下列选项正确的是()A. B.C. D.2.已知,命题“若,则,全为0”的否命题是()A.若,则,全不为0. B.若,不全为0,则.C.若,则,不全为0. D.若,则,全不为0.3.已知抛物线的焦点为F,过点F分别作两条直线,直线与抛物线C交于A、B两点,直线与抛物线C交于D、E两点,若与的斜率的平方和为2,则的最小值为()A.24 B.20C.16 D.124.已知函数为偶函数,则在处的切线方程为()A. B.C. D.5.等差数列的公差为2,若成等比数列,则()A.72 B.90C.36 D.456.已知△ABC的顶点B、C在椭圆+y2=1上,顶点A是椭圆的一个焦点,且椭圆的另外一个焦点在BC边上,则△ABC的周长是()A.2 B.6C.4 D.127.在四棱锥中,底面是正方形,为的中点,若,则()A. B.C. D.8.已知空间向量,,,则()A.4 B.-4C.0 D.29.某中学的“希望工程”募捐小组暑假期间走上街头进行了一次募捐活动,共收到捐款1200元.他们第1天只得到10元,之后采取了积极措施,从第2天起,每一天收到的捐款都比前一天多10元.这次募捐活动一共进行的天数为()A.13 B.14C.15 D.1610.若双曲线(,)的一条渐近线经过点,则双曲线的离心率为()A. B.C. D.211.已知向量,,且,则的值为()A. B.C.或 D.或12.圆关于直线对称,则的最小值是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.命题“若,则”的否命题为______14.已知数列满足,,则______.15.设等差数列的前项和为,若,,则______16.某地区有3个疫苗接种定点医院,现有10名志愿者将被派往这3个医院协助新冠疫苗接种工作,每个医院至少需要2名至多需要4名志愿者,则不同的安排方法共有___________种.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知点,,设动点P满足直线PA与PB的斜率之积为,记动点P的轨迹为曲线E(1)求曲线E的方程;(2)若动直线l经过点,且与曲线E交于C,D(不同于A,B)两点,问:直线AC与BD的斜率之比是否为定值?若为定值,求出该定值;若不为定值,请说明理由18.(12分)已知直线l:,圆C:.(1)当时,试判断直线l与圆C的位置关系,并说明理由;(2)若直线l被圆C截得的弦长恰好为,求k的值.19.(12分)已知圆C经过点,,且它的圆心C在直线上.(1)求圆C的方程;(2)过点作圆C的两条切线,切点分别为M,N,求三角形PMN的面积.20.(12分)在①,②,③这三个条件中任选一个,补充在下面问题的题设条件中.问题:等差数列的公差为,满足,________?(1)求数列的通项公式;(2)求数列的前项和得到最小值时的值.21.(12分)已知椭圆E:的离心率,且右焦点到直线的距离为.(1)求椭圆的标准方程;(2)四边形的顶点在椭圆上,且对角线,过原点,若,证明:四边形的面积为定值.22.(10分)如图,在三棱锥中,,平面,,分别为棱,的中点.(1)求证:;(2)若,,二面角的大小为,求三棱锥的体积.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】由,得在上单调递增,并且由的图象是向上凸,进而判断选项.【详解】由,得在上单调递增,因为,所以,故A不正确;对,,且,总有,可得函数的图象是向上凸,可用如图的图象来表示,由表示函数图象上各点处的切线的斜率,由函数图象可知,随着的增大,的图象越来越平缓,即切线的斜率越来越小,所以,故B不正确;,表示点与点连线的斜率,由图可知,所以C正确,同理,由图可知,故D不正确.故选:C2、C【解析】根据四种命题的关系求解.【详解】因为否命题是否定原命题的条件和结论,所以命题“若,则,全为0”的否命题是:若,则,不全为0,故选:C3、C【解析】设两条直线方程,与抛物线联立,求出弦长的表达式,根据基本不等式求出最小值【详解】抛物线的焦点坐标为,设直线:,直线:,联立得:,所以,所以焦点弦,同理得:,所以,因为,所以,故选:C4、A【解析】根据函数是偶函数可得,可求出,求出函数在处的导数值即为切线斜率,即可求出切线方程.【详解】函数为偶函数,,即,解得,,则,,且,切线方程为,整理得.故选:A.【点睛】本题考查函数奇偶性的应用,考查利用导数求切线方程,属于基础题.5、B【解析】由题意结合成等比数列,有即可得,进而得到、,即可求.【详解】由题意知:,,又成等比数列,∴,解之得,∴,则,∴,故选:B【点睛】思路点睛:由其中三项成等比数列,利用等比中项性质求项,进而得到等差数列的基本量1、由成等比,即;2、等差数列前n项和公式的应用.6、C【解析】根据题设条件求出椭圆的长半轴,再借助椭圆定义即可作答.【详解】由椭圆+y2=1知,该椭圆的长半轴,A是椭圆一个焦点,设另一焦点为,而点在BC边上,点B,C又在椭圆上,由椭圆定义得,所以的周长故选:C7、C【解析】由为的中点,根据向量的运算法则,可得,即可求解.【详解】由底面是正方形,E为的中点,且,根据向量的运算法则,可得.故选:C.8、A【解析】根据空间向量平行求出x,y,进而求得答案.【详解】因为,所以存在实数,使得,则.故选:A.9、C【解析】由题意可得募捐构成了一个以10元为首项,以10元为公差的等差数列,设共募捐了天,然后建立关于的方程,求出即可【详解】由题意可得,第一天募捐10元,第二天募捐20元,募捐构成了一个以10元为首项,以10元为公差的等差数列,根据题意,设共募捐了天,则,解得或(舍去),所以,故选:10、A【解析】先求出渐近线方程,进而将点代入直线方程得到a,b关系,进而求出离心率.【详解】由题意,双曲线的渐近线方程为:,而一条渐近线过点,则,.故选:A.11、C【解析】根据空间向量平行的性质得,代入数值解方程组即可.【详解】因为,所以,所以,所以,解得或.故选:C.12、C【解析】先求出圆的圆心坐标,根据条件可得直线过圆心,从而可得,然后由,展开利用均值不等式可得答案.【详解】由圆可得标准方程为,因为圆关于直线对称,该直线经过圆心,即,,,当且仅当,即时取等号,故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、若,则【解析】否命题是对命题的条件和结论同时否定,同时否定和即可.命题“若,则”的否命题为:若,则考点:四种命题.14、1023【解析】由数列递推公式求特定项,依次求下去即可解决.【详解】数列中,则,,,,,,故答案为:102315、77【解析】依题意利用等差中项求得,进而求得.【详解】依题意可得,则,故故答案为:77.16、22050【解析】先分组,再排列,注意部分平均分组问题,需要除以平均组数的全排列.【详解】根据题意,这10名志愿者的安排方法共有两类:第一类是2,4,4,第二类是3,3,4.故不同的安排方法共有种.故答案为:22050三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)直线AC和BD的斜率之比为定值【解析】(1)设,依据两点的斜率公式可求得曲线E的方程(2)设直线l:,,,联立方程得,得出根与系数的关系,表示直线AC的斜率,直线BD的斜率,并代入计算,可得其定值.【详解】解:(1)设,依题意可得,所以,所以曲线E的方程为(2)依题意,可设直线l:,,,由,可得,则,,因为直线AC的斜率,直线BD的斜率,因为,所以,所以直线AC和BD的斜率之比为定值18、(1)相离,理由见解析;(2)0或【解析】(1)求出圆心到直线的距离和半径比较即可判断;(2)求出圆心到直线的距离,利用弦长计算即可得出.【详解】(1)圆C:的圆心为,半径为2,当时,线l:,则圆心到直线的距离为,直线l与圆C相离;(2)圆心到直线的距离为,弦长为,则,解得或.19、(1);(2).【解析】(1)由题设知,设圆心,应用两点距离公式列方程求参数a,进而确定圆心坐标、半径,写出圆C的方程;(2)利用两点距离公式、切线的性质可得、,再应用三角形面积公式求三角形PMN的面积.【小问1详解】由已知,可设圆心,且,从而有,解得.所以圆心,半径.所以,圆C的方程为.【小问2详解】连接PC,CM,CN,MN,由(1)知:圆心,半径.所以.又PM,PN是圆C的切线,所以,,则,,所以,所以.20、(1)选择条件见解析,(2)【解析】(1)设等差数列的公差为,由,得到,选①,联立求解;选②,联立求解;选③,联立求解;(2)由(1)知,令求解.【小问1详解】解:设等差数列的公差为,得,选①,得,故,∴.选②,得,得,故,∴.选③,,得,故,∴;【小问2详解】由(1)知,,,∴数列是递增等差数列.由,得,∴时,,时,,∴时,得到最小值.21、(1);(2)证明见解析.【解析】(1)根据已知条件列出关于a、b、c的方程组求解即可;(2)设,代入,利用韦达定理,通过,结合,转化求解即可【小问1详解】【小问2详解】设,设,代入,得,∵,∴,,∵,得,即,解得,∵,且,又,,整理得,∴为定
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026西藏昌都市洛隆县人民医院临时招聘医技人员2人参考题库附答案
- 2026辽宁大连理工大学化工学院党群办公室职员(自聘)招聘1人备考题库附答案
- 2026重庆市城投路桥管理有限公司食堂炊事员岗位2人参考题库附答案
- 2026陕西省面向华南理工大学招录选调生考试备考题库附答案
- 兴国县2025年公开选调食品安全监管人员的备考题库附答案
- 招护理!西宁市城北区朝阳社区卫生服务中心招聘备考题库附答案
- 浙江国企招聘-2026年台州市商贸核心区开发建设投资集团有限公司招聘3人备考题库附答案
- 辅警78名!2025年海南州公安局面向社会公开招聘警务辅助人员考试备考题库附答案
- 2026贵州湄潭县纪委县监委选调事业单位工作人员参考题库附答案
- 2026年青海社区招聘考试题库附答案
- 2026年内蒙古北方职业技术学院高职单招职业适应性测试备考题库带答案解析
- 2025至2030数字PCR和实时PCR(qPCR)行业发展趋势分析与未来投资战略咨询研究报告
- 2026届广东省广州市高三上学期12月零模历史试题含答案
- 2026年汽车租赁安全生产管理制度模版
- 2026贵州安顺市平坝区粮油收储经营有限公司招聘5人笔试备考试题及答案解析
- 开工第一课安全培训课件
- 急诊成人社区获得性肺炎临床实践指南(2024年版)解读课件
- 华东理工大学2026年公开招聘工作人员46名备考题库及答案详解(新)
- 智能机械与机器人全套课件
- 管道试压专项施工方案
- 2025-2030中国固定电话行业市场深度调研及发展趋势和投资前景预测研究报告
评论
0/150
提交评论