版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省日照农业学校2026届高一数学第一学期期末统考模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数在区间单调递减,在区间上有零点,则的取值范围是A. B.C. D.2.下列函数中,既是奇函数又在区间上单调递增的是()A. B.C. D.3.已知集合,,则()A. B.C. D.4.若直线与直线垂直,则()A.6 B.4C. D.5.若全集,且,则()A.或 B.或C. D.或.6.已知指数函数(,且),且,则的取值范围()A. B.C. D.7.已知函数,,如图所示,则图象对应的解析式可能是()A. B.C. D.8.已知两直线,.若,则的值为A.0 B.0或4C.-1或 D.9.下列函数是奇函数,且在区间上是增函数的是A. B.C. D.10.函数的大致图象是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数的定义域为_______________12.已知奇函数f(x),当x>0,fx=x213.求值:______.14.若函数在区间内为减函数,则实数a的取值范围为___________.15.在中,,,,若将绕直线旋转一周,则所形成的几何体的体积是__________16.已知幂函数f(x)=xa的图象经过点(8,2),则f(27)的值为____________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数)的最大值为2(1)求m的值;(2)求使成立的x的取值集合;(3)将的图象上所有点的横坐标变为原来的)倍(纵坐标不变),得到函数的图象,若是的一个零点,求t的最大值18.已知函数(1)判断f(x)的奇偶性,并说明理由;(2)用定义证明f(x)在(1,+∞)上单调递增;(3)求f(x)在[-2,-1]上的值域19.如图,在三棱锥P-ABC中,PA⊥AB,PA⊥AC,AB⊥BC,,D为线段AC的中点,E为线段PC上一点.(1)求证:平面BDE⊥平面PAC;(2)求二面角P-BC-A的平面角的大小.20.已知集合,(1)当,求;(2)若,求的取值范围.21.如图,一个半径为4米的筒车按逆时针方向每分钟转1圈,筒车的轴心O距水面的高度为2米.设筒车上的某个盛水筒W到水面的距离为d(单位:米)(在水面下则d为负数).若以盛水筒W刚浮出水面时开始计算时间,则d与时间t(单位:分钟)之间的关系为.(1)求的值;(2)求盛水筒W出水后至少经过多少时间就可到达最高点?(3)某时刻(单位:分钟)时,盛水筒W在过O点的竖直直线的左侧,到水面的距离为5米,再经过分钟后,盛水筒W是否在水中?
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】分析:结合余弦函数的单调减区间,求出零点,再结合零点范围列出不等式详解:当,,又∵,则,即,,由得,,∴,解得,综上.故选C.点睛:余弦函数的单调减区间:,增区间:,零点:,对称轴:,对称中心:,.2、D【解析】利用是偶函数判定选项A错误;利用判定选项B错误;利用的定义域判定选项C错误;利用奇偶性的定义证明是奇函数,再通过基本函数的单调性判定的单调性,进而判定选项D正确.【详解】对于A:是偶函数,即选项A错误;对于B:是奇函数,但,所以在区间上不单调递增,即选项B错误;对于C:是奇函数,但的定义域为,,即选项C错误;对于D:因为,,有,即奇函数;因为在区间上单调递增,在区间上单调递增,所以在区间上单调递增,即选项D正确.故选:D.3、A【解析】由已知得,因为,所以,故选A4、A【解析】由两条直线垂直的条件可得答案.【详解】由题意可知,即故选:A.5、D【解析】根据集合补集的概念及运算,准确计算,即可求解.【详解】由题意,全集,且,根据集合补集的概念及运算,可得或.故选:D.6、A【解析】根据指数函数的单调性可解决此题【详解】解:由指数函数(,且),且根据指数函数单调性可知所以,故选:A7、C【解析】利用奇偶性和定义域,采取排除法可得答案.【详解】显然和为奇函数,则和为奇函数,排除A,B,又定义域为,排除D故选:C8、B【解析】分两种情况:一、斜率不存在,即此时满足题意;二、斜率存在即,此时两斜率分别为,,因为两直线平行,所以,解得或(舍),故选B考点:由两直线斜率判断两直线平行9、B【解析】逐一考查所给函数的单调性和奇偶性即可.【详解】逐一考查所给函数的性质:A.,函数为奇函数,在区间上不具有单调性,不合题意;B.,函数为奇函数,在区间上是增函数,符合题意;C.,函数为非奇非偶函数,在区间上是增函数,不合题意;D.,函数为奇函数,在区间上不具有单调性,不合题意;本题选择B选项.【点睛】本题主要考查函数的单调性,函数的奇偶性等知识,意在考查学生的转化能力和计算求解能力.10、C【解析】由奇偶性定义判断的奇偶性,结合对数、余弦函数的性质判断趋向于0时的变化趋势,应用排除法即可得正确答案.【详解】由且定义域,所以为偶函数,排除B、D.又在趋向于0时趋向负无穷,在趋向于0时趋向1,所以在趋向于0时函数值趋向负无穷,排除A.故选:C二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由题可知,解不等式即可得出原函数的定义域.【详解】对于函数,有,即,解得,因此,函数的定义域为.故答案为:.12、-10【解析】根据函数奇偶性把求f-2的值,转化成求f2【详解】由f(x)为奇函数,可知f-x=-f又当x>0,fx=故f故答案为:-1013、7【解析】利用指数式与对数式的互化,对数运算法则计算作答.【详解】.故答案为:714、【解析】由复合函数单调性的判断法则及对数函数的真数大于0恒成立,列出不等式组求解即可得答案.【详解】解:因为,函数在区间内为减函数,所以有,解得,所以实数a的取值范围为,故答案为:.15、【解析】依题意可知,旋转体是一个大圆锥去掉一个小圆锥,所以OA=,OB=1所以旋转体的体积:故答案为.16、3【解析】根据幂函数f(x)=xa的图象经过点(8,2)求出a的值,再求f(27)的值.【详解】幂函数f(x)=xa的图象经过点(8,2),则8α=2,∴α=,∴f(x)=,∴f(27)==3.故答案为3【点睛】本题主要考查幂函数的概念和解析式的求法,考查幂函数的图像和性质,意在考查学生对这些知识的掌握水平和分析推理能力.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)(3)【解析】(1)将函数解析式化简整理,然后求出最值,进而得到,即可求出结果;(2)结合正弦型函数图象,解三角不等式即可求出结果;(3)结合伸缩变换求出函数的解析式,进而求出零点,然后结合题意即可求出结果.【小问1详解】因为的最大值为1,所以的最大值为,依题意,,解得【小问2详解】由(1)知,由,得所以解得所以,使成立的x取值集合为【小问3详解】依题意,,因为是的一个零点,所以,所以所以,因为,所以,所以t的最大值为18、(1)f(x)为奇函数,理由见解析(2)证明见解析(3)[-,-2]【解析】(1)根据奇偶性的定义判断;(2)由单调性的定义证明;(3)由单调性得值域【小问1详解】f(x)为奇函数由于f(x)的定义域为,关于原点对称,且,所以f(x)为在上的奇函数(画图正确,由图得出正确结论,也可以得分)【小问2详解】证明:设任意,,有由,得,,即,所以函数f(x)在(1,+∞)上单调递增【小问3详解】由(1),(2)得函数f(x)在[-2,-1]上单调递增,故f(x)的最大值为,最小值为,所以f(x)在[-2,-1]的值域为[-,-2]19、(1)见解析(2)【解析】(1)由线面垂直的判定定理可得平面,从而可得,证明,再根据线面垂直的判定定理可得平面PAC,再根据面面垂直的判定定理即可得证;(2)由线面垂直的性质可得,再根据线面垂直的判定定理可得平面,则有,从而可得即为二面角P-BC-A的平面角,从而可得出答案.【小问1详解】证明:因为PA⊥AB,PA⊥AC,,所以平面,又因平面,所以,因为D为线段AC的中点,,所以,又,所以平面PAC,又因为平面BDE,所以平面BDE⊥平面PAC;【小问2详解】解:由(1)得平面,又平面,所以,因为AB⊥BC,,所以平面,因为平面,所以,所以即为二面角P-BC-A平面角,中,,所以,所以,即二面角P-BC-A的平面角的大小为.20、(1)(2)【解析】(1)首先求出集合,然后根据集合的交集运算可得答案;(2)分、两种情况讨论求解即可.【小问1详解】因为,所以因为,所以【小问2详解】当,即,时,符合题意当时可得或,解得或综上,的取值范围为21、(1);(2)分钟;(3)再经过分钟后盛水筒不在水中.【解析】(1)先结合题设条件得到,,求得,再利用初始值计算初相即可;(2)根据盛水筒达到最高点时,代入计算t值,再根据,得到最少时间即可;(3)先计算时,根据题意,利用同角三角函数的平方关系求,再由分钟后,进而计算d值并判断正负,即得结果.【详解】解:(1)由题意知,,即,所以,由题意半径为4米,筒车的轴心O距水面
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 残障活动儿童策划方案(3篇)
- 班级团年活动策划方案(3篇)
- 车间清洁卫生管理制度(3篇)
- 《GAT 974.58-2011消防信息代码 第58部分:消防水源分类与代码》专题研究报告
- 中学学生社团活动经费保障制度
- 养老院心理健康支持制度
- 养鸭技术培训课件
- 企业人力资源配置制度
- 养鸭保苗技术培训课件
- 交通违法行为举报奖励制度
- 深圳市盐田区2025年数学六上期末综合测试试题含解析
- DB5203∕T 38-2023 特色酒庄旅游服务等级划分与评定
- 四川省成都市嘉祥外国语学校2024-2025学年七年级数学第一学期期末学业质量监测试题含解析
- 华为客户分级管理制度
- 双向转诊职责与患者体验提升
- 2025年中考道德与法治三轮冲刺:主观题常用答题术语速查宝典
- 2025届北京丰台区高三二模高考语文试卷试题(含答案详解)
- 《四川省普通国省道养护预算编制办法》及配套定额解读2025
- 论语的测试题及答案
- 《机械制图(第五版)》 课件 第9章 装配图
- 教师年薪合同协议
评论
0/150
提交评论