版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届长春市第八十七中学高二数学第一学期期末质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某地政府为落实疫情防控常态化,不定时从当地780名公务员中,采用系统抽样的方法抽取30人做核酸检测.把这批公务员按001到780进行编号,若018号被抽中,则下列编号也被抽中的是()A.076 B.122C.390 D.5222.在中,,,为所在平面上任意一点,则的最小值为()A.1 B.C.-1 D.-23.已知等差数列为其前项和,且,且,则()A.36 B.117C. D.134.当我们停放自行车时,只要将自行车旁的撑脚放下,自行车就稳了,这用到了()A.三点确定一平面 B.不共线三点确定一平面C.两条相交直线确定一平面 D.两条平行直线确定一平面5.在棱长为1的正方体中,点,分别是,的中点,点是棱上的点且满足,则两异面直线,所成角的余弦值是()A. B.C. D.6.过椭圆右焦点作x轴的垂线,并交C于A,B两点,直线l过C的左焦点和上顶点.若以线段AB为直径的圆与有2个公共点,则C的离心率e的取值范围是()A. B.C. D.7.已知,是圆上的两点,是直线上一点,若存在点,,,使得,则实数的取值范围是()A. B.C. D.8.在等差数列中,,,则公差A.1 B.2C.3 D.49.阿波罗尼斯是古希腊著名数学家,与欧几里得、阿基米德并称为亚历山大时期数学三巨匠,他对圆锥曲线有深刻而系统的研究,主要研究成果集中在他的代表作《圆锥曲线》一书,阿波罗尼斯圆就是他的研究成果之一.指的是:已知动点与两定点的距离之比,那么点的轨迹就是阿波罗尼斯圆.已知动点的轨迹是阿波罗尼斯圆,其方程为,其中,定点为轴上一点,定点的坐标为,若点,则的最小值为()A. B.C. D.10.若,满足约束条件则的最大值是A.-8 B.-3C.0 D.111.已知数列是等比数列,,是函数的两个不同零点,则等于()A. B.C.14 D.1612.已知双曲线的左、右焦点分别为,,P为双曲线C上一点,,直线与y轴交于点Q,若,则双曲线C的渐近线方程为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知双曲线的左,右焦点分别为,,右焦点到一条渐近线的距离是,则其离心率的值是______;若点P是双曲线C上一点,满足,,则双曲线C的方程为______14.已知数列的前4项依次为,,,,则的一个通项公式为________15.某校组织了一场演讲比赛,五位评委对某位参赛选手的评分分别为9,x,8,y,9.已知这组数据的平均数为8.6,方差为0.24,则______16.对于下面这个等式我们除了可以用等比数列的求和公式获得,还可以用数学归纳法对其进行证明“”,那么在应用数学归纳法证明时,当验证是否成立时,左边的式子应该是_______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆过点,且离心率.(1)求椭圆的方程;(2)设直交椭圆于两点,判断点与以线段为直径的圆的位置关系,并说明理由.18.(12分)已知复数,是实数.(1)求复数z;(2)若复数在复平面内所表示的点在第二象限,求实数m的取值范围.19.(12分)已知椭圆的一个焦点与抛物线的焦点重合,椭圆上的动点到焦点的最大距离为.(1)求椭圆的标准方程;(2)过作一条不与坐标轴垂直的直线交椭圆于两点,弦的中垂线交轴于,当变化时,是否为定值?若是,定值为多少?20.(12分)如图所示,在直三棱柱中,,,(1)求三棱柱的表面积;(2)求异面直线与所成角的大小(结果用反三角函数表示)21.(12分)如图,在四棱锥中,底面,,,,,为上一点,且.请用空间向量知识解答下列问题:(1)求证:平面;(2)求平面与平面夹角的大小.22.(10分)自我国爆发新冠肺炎疫情以来,各地医疗单位都加紧了医疗用品的生产.某医疗器械厂统计了口罩生产车间每名工人的生产速度,并将所得数据分成五组并绘制出如图所示的频率分布直方图.已知前四组的频率成等差数列,第五组与第二组的频率相等(1)估计口罩生产车间工人生产速度的中位数(结果写成分数的形式);(2)为了解该车间工人生产速度是否与他们的工作经验有关,现从车间所有工人中随机抽样调查了5名工人的生产速度以及他们的工龄(参加工作的年限),数据如下表:工龄x(单位:年)4681012生产速度y(单位:件/小时)4257626267根据上述数据求每名工人的生产速度y关于他的工龄x的回归方程,并据此估计该车间某位有16年工龄的工人的生产速度附:回归方程中斜率和截距的最小二乘估计公式为:,
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据系统抽样的特点,写出组数与对应抽取编号的关系式,即可判断和选择.【详解】根据题意,780名公务员中,采用系统抽样的方法抽取30人,则需要分为组,每组人;设第组抽取的编号为,故可设,又第一组抽中号,故可得,解得故,当时,.故选:.2、C【解析】以为建立平面直角坐标系,设,把向量的数量积用坐标表示后可得最小值【详解】如图,以为建立平面直角坐标系,则,设,,,,,∴,∴当时,取得最小值故选:C【点睛】本题考查向量的数量积,解题方法是建立平面直角坐标系,把向量的数量积转化为坐标表示3、B【解析】根据等差数列下标的性质,,进而根据条件求出,然后结合等差数列的求和公式和下标性质求得答案.【详解】由题意,,即为递增数列,所以,又,又,联立方程组解得:.于是,.故选:B.4、B【解析】自行车前后轮与撑脚分别接触地面,使得自行车稳定,此时自行车与地面的三个接触点不在同一条线上.【详解】自行车前后轮与撑脚分别接触地面,此时三个接触点不在同一条线上,所以可以确定一个平面,即地面,从而使得自行车稳定.故选B项.【点睛】本题考查不共线的三个点确定一个平面,属于简单题.5、A【解析】建立空间直角坐标系,写出点、、、和向量的、坐标,运用求异面直线余弦值的公式即可求出.【详解】解:以为原点,分别以,,所在直线为,,轴建立如图所示的空间直角坐标第,则,,,,故,,,故两异面直线,所成角的余弦值是.故选:A.【点睛】本题考查求异面直线所成角的余弦值,属于中档题.6、A【解析】求得以为直径的圆的圆心和半径,求得直线的方程,利用圆心到直线的距离小于半径列不等式,化简后求得椭圆离心率的取值范围.【详解】椭圆的左焦点,右焦点,上顶点,,所以为直径的圆的圆心为,半径为.直线的方程为,由于以线段为直径的圆与相交,所以,,,,,所以椭圆的离心率的取值范围是.故选:A7、B【解析】确定在以为直径的圆上,,根据均值不等式得到圆上的点到的最大距离为,得到,解得答案.【详解】,故在以为直径的圆上,设中点为,则,圆上的点到的最大距离为,,当时等号成立.直线到原点的距离为,故.故选:B.8、B【解析】由,将转化为表示,结合,即可求解.【详解】,.故选:B.【点睛】本题考查等差数列基本量的计算,属于基础题.9、D【解析】设,,根据和求出a的值,由,两点之间直线最短,可得的最小值为,根据坐标求出即可.【详解】设,,所以,由,所以,因为且,所以,整理可得,又动点M的轨迹是,所以,解得,所以,又,所以,因为,所以的最小值,当M在位置或时等号成立.故选:D10、C【解析】作出可行域,把变形为,平移直线过点时,最大.【详解】作出可行域如图:由得:,作出直线,平移直线过点时,.故选C.【点睛】本题主要考查了简单线性规划问题,属于中档题.11、C【解析】根据等比数列的性质求得正确答案.【详解】是函数的两个不同零点,所以,由于数列是等比数列,所以.故选:C12、B【解析】由题意可设且,即得a、b的数量关系,进而求双曲线C的渐近线方程.【详解】由题设,,,又,P为双曲线C上一点,∴,又,为的中点,∴,即,∴双曲线C的渐近线方程为.故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、①.##1.5②.【解析】求得焦点到渐近线的距离可得,计算即可求得离心率,由双曲线的定义可求得,计算即可得出结果.【详解】双曲线的渐近线方程为,即,焦点到渐近线的距离为,又,,,,.双曲线上任意一点到两焦点距离之差的绝对值为,即,,即,解得:,由,解得:,.双曲线C的方程为.故答案为:;.14、(答案不唯一)【解析】观察数列前几项,找出规律即可写出通项公式.【详解】根据数列前几项,先不考虑正负,可知,再由奇数项为负,偶数项为正,可得到一个通项公式,故答案为:(不唯一)15、1【解析】根据平均数和方差的计算公式,求得,则问题得解.【详解】由题可知:整理得:;,整理得:,联立方程组得,解得或,对应或,故.故答案为:1.16、【解析】根据已知条件,结合数学归纳法的定义,即可求解.【详解】当,,故此时式子左边=.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)点G在以AB为直径的圆外【解析】解法一:(Ⅰ)由已知得解得所以椭圆E的方程为(Ⅱ)设点AB中点为由所以从而.所以.,故所以,故G在以AB为直径的圆外解法二:(Ⅰ)同解法一.(Ⅱ)设点,则由所以从而所以不共线,所以锐角.故点G在以AB为直径的圆外考点:1、椭圆的标准方程;2、直线和椭圆的位置关系;3、点和圆的位置关系18、(1)(2)【解析】(1)先将代入化简,再由其虚部为零可求出的值,从而可求出复数,(2)先对化简,再由题意可得从而可求得结果【小问1详解】因为,所以,因为是实数,所以,解得.故.【小问2详解】因为,所以.因为复数所表示的点在第二象限,所以解得,即实数m的取值范围是.19、(1)(2)是,【解析】(1)由抛物线方程求出其焦点坐标,结合椭圆的几何性质列出,的方程,解方程求,由此可得椭圆方程,(2)联立直线椭圆椭圆方程,求出弦的长和其中垂线方程,再计算,由此完成证明.【小问1详解】抛物线的交点坐标为(1,0),,又,又,∴,椭圆的标准方程为.【小问2详解】设直线的斜率为,则直线的方程为,联立消元得到,显然,,∴,又的中点坐标为,直线的中垂线的斜率为∴直线的中垂线方程为,令,,(常数).【点睛】求定值问题常见的方法有两种:(1)从特殊入手,求出定值,再证明这个值与变量无关(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值20、(1);(2)【解析】(1)利用S=2S△ABC+S侧,可得三棱柱ABC﹣A1B1C1的表面积S;(2)连接BC1,确定∠BA1C1就是异面直线A1B与AC所成的角(或其补角),在△A1BC1中,利用余弦定理可求结论【详解】(1)在△ABC中,因为AB=2,AC=4,∠ABC=90°,所以BC=.S△ABC=AB×BC=2所以S=2S△ABC+S侧=4+(2+2+4)×4=24+12(2)连接BC1,因为AC∥A1C1,所以∠BA1C1就是异面直线A1B与AC所成的角(或其补角)在△A1BC1中,A1B=2,BC1=2,A1C1=4,由余弦定理可得cos∠BA1C1=,所以∠BA1C1=arccos,即异面直线A1B与AC所成角的大小为arccos【点睛】本题考查三棱柱的表面积,考查线线角,解题的关键是正确作出线线角,属于中档题21、(1)证明见解析(2)【解析】(1)以为原点,、、分别为轴、轴、轴建立空间直角坐标系,证明出,,结合线面垂直的判定定理可证得结论成立;(2)利用空间向量法可求得平面与平面夹角的大小.【小问1详解】证明:底面,,故以为原点,、、分别为轴、轴、轴建立如图所示的空间直角坐标系,则、、、、、,所以,,,,则,,即,,又,所以,平面.【小问2详解】解:知,,,设平面的法向量为,则,,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 内勤组介绍教学课件
- 内勤业务知识培训课件
- 溺水救助活动策划方案(3篇)
- 绿化管养工具管理制度(3篇)
- 兽药产品培训
- 兽医注射技术
- 《GAT 1311-2016法庭科学印章印文鉴定意见规范》专题研究报告
- 兼职团队培训
- 养老院环境卫生制度
- 企业资产管理制度
- 2026年南通科技职业学院高职单招职业适应性测试备考试题含答案解析
- 2025年广西职业师范学院招聘真题
- 中远海运集团笔试题目2026
- 扦插育苗技术培训课件
- 2026年中国热带农业科学院橡胶研究所高层次人才引进备考题库含答案详解
- 妆造店化妆品管理制度规范
- 2025-2026学年四年级英语上册期末试题卷(含听力音频)
- 单层21米高厂房钢结构施工方案
- 2022高三英语一模-普陀区解析-fixed
- 临时用水施工方案
- LOTO上锁挂牌安全培训课件
评论
0/150
提交评论