辽宁省本溪市2026届高二上数学期末质量跟踪监视模拟试题含解析_第1页
辽宁省本溪市2026届高二上数学期末质量跟踪监视模拟试题含解析_第2页
辽宁省本溪市2026届高二上数学期末质量跟踪监视模拟试题含解析_第3页
辽宁省本溪市2026届高二上数学期末质量跟踪监视模拟试题含解析_第4页
辽宁省本溪市2026届高二上数学期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

辽宁省本溪市2026届高二上数学期末质量跟踪监视模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在中,,则边的长等于()A. B.C. D.22.已知为虚数单位,复数是纯虚数,则()A B.4C.3 D.23.函数f(x)=的图象大致形状是()A. B.C. D.4.已知曲线,下列命题错误的是()A.若,则是椭圆,其焦点在轴上B.若,则是圆,其半径为C.若,则是双曲线,其渐近线方程为D.若,,为上任意一点,,为曲线的两个焦点,则5.设,,且,则等于()A. B.C. D.6.有6本不同的书,按下列方式进行分配,其中分配种数正确的是()A.分给甲、乙、丙三人,每人各2本,有15种分法;B.分给甲、乙、丙三人中,一人4本,另两人各1本,有180种分法;C.分给甲乙每人各2本,分给丙丁每人各1本,共有90种分法;D.分给甲乙丙丁四人,有两人各2本,另两人各1本,有1080种分法;7.如图,在三棱锥中,点E在上,满足,点F为的中点,记分别为,则()A. B.C. D.8.已知函数,则()A.函数在上单调递增B.函数上有两个零点C.函数有极大值16D.函数有最小值9.已知函数(其中)的部分图像如图所示,则函数的解析式为()A. B.C. D.10.已知F1(-5,0),F2(5,0),动点P满足|PF1|-|PF2|=2a,当a为3和5时,点P的轨迹分别为()A.双曲线和一条直线 B.双曲线和一条射线C.双曲线的一支和一条直线 D.双曲线的一支和一条射线11.设双曲线()的焦距为12,则()A.1 B.2C.3 D.412.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线的距离为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.函数,其导函数为函数,则__________14.曲线在处的切线方程是________.15.数列的前项和为,则的通项公式为________.16.曲线在处的切线方程为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数(1)当时,求的单调递减区间;(2)若关于的方程恰有两个不等实根,求实数的取值范围18.(12分)在中,其顶点坐标为.(1)求直线的方程;(2)求的面积.19.(12分)已知函数.(1)当时,不等式恒成立,求实数的取值范围;(2)解关于的不等式:.20.(12分)已知圆C:x2+y2-2x+4y-4=0,问是否存在斜率是1的直线l,使l被圆C截得的弦AB,以AB为直径的圆经过原点,若存在,写出直线l的方程;若不存在,说明理由.21.(12分)已知圆C过两点,,且圆心C在直线上(1)求圆C的方程;(2)过点作圆C的切线,求切线方程22.(10分)已知椭圆的离心率为,短轴端点到焦点的距离为2(1)求椭圆的方程;(2)设为椭圆上任意两点,为坐标原点,且以为直径的圆经过原点,求证:原点到直线的距离为定值,并求出该定值

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】由余弦定理求解【详解】由余弦定理,得,即,解得(负值舍去)故选:A2、C【解析】化简复数得,由其为纯虚数求参数a,进而求的模即可.【详解】由为纯虚数,∴,解得:,则,故选:C3、B【解析】利用函数的奇偶性排除选项A,C,然后利用特殊值判断即可【详解】解:由题得函数的定义域为,关于原点对称.所以函数是奇函数,排除选项A,C.当时,,排除选项D,故选:B4、D【解析】根据椭圆和双曲线的性质以及定义逐一判断即可.【详解】曲线,若,则是椭圆,其焦点在轴上,故A正确;若,则,即是圆,半径为,故B正确;若,则是双曲线,当,则渐近线方程为,当,则渐近线方程为,故C正确;若,,则是双曲线,其焦点在轴上,由双曲线的定义可知,,故D错误;故选:D5、A【解析】由空间向量垂直的坐标表示可求得实数的值.【详解】由已知可得,解得.故选:A.6、D【解析】根据题意,分别按照选项说法列式计算验证即可做出判断.【详解】选项A,6本不同的书分给甲、乙、丙三人,每人各2本,有种分配方法,故该选项错误;选项B,6本不同的书分给甲、乙、丙三人,一人4本,另两人各1本,先将6本书分成4-1-1的3组,再将三组分给甲乙丙三人,有种分配方法,故该选项错误;选项C,6本不同的书分给甲乙每人各2本,有种方法,其余分给丙丁每人各1本,有种方法,所以不同的分配方法有种,故该选项错误;选项D,先将6本书分为2-2-1-14组,再将4组分给甲乙丙丁4人,有种方法,故该选项正确.故选:D.7、B【解析】利用空间向量加减、数乘的几何意义,结合三棱锥用表示出即可.【详解】由题设,,,,.故选:B8、C【解析】对求导,研究的单调性以及极值,再结合选项即可得到答案.【详解】,由,得或,由,得,所以在上递增,在上递减,在上递增,所以极大值为,极小值为,所以有3个零点,且无最小值.故选:C9、B【解析】根据题图有且,结合五点法求参数,即可得的解析式.【详解】由图知:且,则,所以,则,即,又,可得,,则,,又,即有.综上,.故选:B10、D【解析】由双曲线定义结合参数a的取值分类讨论而得.【详解】依题意得,当时,,且,点P的轨迹为双曲线的右支;当时,,故点P的轨迹为一条射线.故选D.故选:D11、B【解析】根据可得关于的方程,解方程即可得答案.【详解】因为可化为,所以,则.故选:B.【点睛】本题考查已知双曲线的焦距求参数的值,考查函数与方程思想,考查运算求解能力,属于基础题.12、B【解析】由题意可知圆心在第一象限,设圆心的坐标为,可得圆的半径为,写出圆的标准方程,利用点在圆上,求得实数的值,利用点到直线的距离公式可求出圆心到直线的距离.【详解】由于圆上的点在第一象限,若圆心不在第一象限,则圆与至少与一条坐标轴相交,不合乎题意,所以圆心必在第一象限,设圆心的坐标为,则圆的半径为,圆的标准方程为.由题意可得,可得,解得或,所以圆心的坐标为或,圆心到直线的距离均为;圆心到直线的距离均为圆心到直线的距离均为;所以,圆心到直线的距离为.故选:B.【点睛】本题考查圆心到直线距离的计算,求出圆的方程是解题的关键,考查计算能力,属于中等题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据解析式,可求得解析式,代入数据,即可得答案.详解】∵,∴,∴.故答案为:.14、【解析】求出函数的导函数,把代入即可得到切线的斜率,然后根据和斜率写出切线的方程即可.【详解】解:由函数知,把代入得到切线的斜率则切线方程为:,即.故答案为:【点睛】本题考查导数的几何意义,属于基础题15、【解析】讨论和两种情况,进而利用求得答案.【详解】由题意,时,,时,,则,于是,故答案为:16、【解析】求得的导数,可得切线的斜率和切点,由斜截式方程可得切线方程【详解】解:的导数为,可得曲线在处的切线斜率为,切点为,即有切线方程为故答案为【点睛】本题考查导数的运用:求切线方程,考查导数的几何意义,直线方程的运用,考查方程思想,属于基础题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】(1)求出导数,令,得出变化情况表,即可得出单调区间;(2)分离参数得,构造函数,利用导数讨论单调性,根据与恰有两个不同交点即可得出.【详解】(1)当时,函数,则令,得,,当x变化时,的变化情况如下表:1+00+↗极大值↘极小值↗∴在上单调递减(2)依题意,即.则令,则当时,,故单调递增,且;当时,,故单调递减,且∴函数在处取得最大值故要使与恰有两个不同的交点,只需∴实数a的取值范围是【点睛】关键点睛:本题考查根据方程根的个数求参数,解题的关键是参数分离,构造函数利用导数讨论单调性,根据函数交点个数判断.18、(1)(2)【解析】(1)先求出AB的斜率,再利用点斜式写出方程即可;(2)先求出,再求出C到AB的距离即可得到答案.【小问1详解】由已知,,所以直线的方程为,即.【小问2详解】,C到直线AB的距离为,所以的面积为.19、(1);(2)答案见解析.【解析】(1)由题设可得,进而可知在恒成立,即可求参数范围.(2)题设不等式等价于,讨论的大小并根据一元二次不等式的解法求解集即可.【小问1详解】当时,得,即.由,则,∴,即,∴,即,∴实数的取值范围是.【小问2详解】由,即,即.①当时,不等式解集为;②当时,不等式的解集为;③当时,不等式的解集为.综上,当时﹐不等式的解集为;当时,不等式的解集为﹔当时,不等式的解集为.20、x-y-4=0或x-y+1="0."【解析】假设存在,并设出直线方程y=x+b,然后代入圆的方程得到关于x的一元二次方程,利用韦达定理得到根的关系,最后利用OA⊥OB即x1x2+y1y2=0,得到参数b的方程求解即可试题解析:设直线l的方程为y=x+b①圆C:x2+y2-2x+4y-4=0.②联立①②消去y,得2x2+2(b+1)x+b2+4b-4=0设A(x1,y1),B(x2,y2),则有③因为以AB为直径的圆经过原点,所以OA⊥OB,即x1x2+y1y2=0,而y1y2=(x1+b)(x2+b)=x1x2+b(x1+x2)+b2,所以2x1x2+b(x1+x2)+b2=0,把③代入:b2+4b-4-b(b+1)+b2=0,即b2+3b-4=0,解得b=1或b=-4,故直线l存在,方程是x-y+1=0,或x-y-4=0考点:存在性问题【方法点睛】存在性问题,首先应假设存在,然后去求解.对本题来说具体是:设出直线方程y=x+b,然后分析几何性质得到OA⊥OB即得到关于参数b方程求解即可.解该类问题最容易出错的的地方是,忽视对参数范围的考虑,即直线方程与圆的方程联立求解后应得到,即求出的b值必须满足b的范围,否则无解21、(1).(或标准形式)(2)或【解析】(1)根据题意,求出中垂线方程,与直线联立,可得圆心的坐标,求出圆的半径,即可得答案;(2)分切线的斜率存在与不存在两种情况讨论,求出切线的方程,综合可得答案【小问1详解】解:根据题意,因为圆过两点,,设的中点为,则,因为,所以的中垂线方程为,即又因为圆心在直线上,联立,解得,所以圆心,半径,故圆的方程为,【小问2详解】解:当过点P的切线的斜率不存在时,此时直线与圆C相切当过点P的切线斜率k存在时,设切线方程为即(*)由圆心C到切线的距离,可得将代入(*),得切线方程为综上,所求切线方程为或22、(1)(2)证明见解析,定值为【解析】(1)根据题意得到,,得到椭圆方程.(2)考虑直线斜率存在和不存在两种情况,联立方程,根据韦达定理得到根与系数的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论