福建省福州市金山中学2026届高二数学第一学期期末综合测试试题含解析_第1页
福建省福州市金山中学2026届高二数学第一学期期末综合测试试题含解析_第2页
福建省福州市金山中学2026届高二数学第一学期期末综合测试试题含解析_第3页
福建省福州市金山中学2026届高二数学第一学期期末综合测试试题含解析_第4页
福建省福州市金山中学2026届高二数学第一学期期末综合测试试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

福建省福州市金山中学2026届高二数学第一学期期末综合测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设,则“”是“直线与直线”平行的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.即不充分也不必要条件2.设命题,则为A. B.C. D.3.用这3个数组成没有重复数字的三位数,则事件“这个三位数是偶数”与事件“这个三位数大于342”()A.是互斥但不对立事件 B.不是互斥事件C.是对立事件 D.是不可能事件4.如图,在正三棱柱中,若,则C到直线的距离为()A. B.C. D.5.已知直线l与抛物线交于不同的两点A,B,O为坐标原点,若直线的斜率之积为,则直线l恒过定点()A. B.C. D.6.一直线过点,则此直线的倾斜角为()A.45° B.135°C.-45° D.-135°7.命题p:存在一个实数﹐它的绝对值不是正数.则下列结论正确的是()A.:任意实数,它的绝对值是正数,为假命题B.:任意实数,它的绝对值不是正数,为假命题C.:存在一个实数,它的绝对值是正数,为真命题D.:存在一个实数,它的绝对值是负数,为真命题8.已知椭圆的左,右焦点分别为,,直线与C交于点M,N,若四边形的面积为且,则C的离心率为()A. B.C. D.9.设,直线与直线平行,则()A. B.C. D.10.已知椭圆C:的左右焦点为F1,F2,离心率为,过F2的直线l交C与A,B两点,若△AF1B的周长为,则C的方程为()A. B.C. D.11.设双曲线与椭圆:有公共焦点,.若双曲线经过点,设为双曲线与椭圆的一个交点,则的余弦值为()A. B.C. D.12.若双曲线(,)的一条渐近线经过点,则双曲线的离心率为()A. B.C. D.2二、填空题:本题共4小题,每小题5分,共20分。13.已知直线与平行,则实数的值为_____________.14.某几何体的三视图如图所示,则该几何体的体积为______.15.经过、两点的直线斜率为______.16.椭圆的左焦点为,M为椭圆上的一点,N是的中点,O为原点,若,则______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知定点,动点满足,设点的轨迹为.(1)求轨迹的方程;(2)若点分别是圆和轨迹上的点,求两点间的最大距离.18.(12分)等比数列的各项均为正数,且,.(1)求数列的通项公式;(2)设,求数列前项和.19.(12分)已知函数,为的导函数(1)求的定义域和导函数;(2)当时,求函数的单调区间;(3)若对,都有成立,且存在,使成立,求实数a的取值范围20.(12分)如图,几何体是圆柱的一部分,它是由矩形(及其内部)以边所在直线为旋转轴旋转得到的封闭图形.(1)设,,求这个几何体的表面积;(2)设G是弧DF的中点,设P是弧CE上的一点,且.求异面直线AG与BP所成角的大小.21.(12分)已知圆M的方程为.(1)写出圆M的圆心坐标和半径;(2)经过点的直线l被圆M截得弦长为,求l的方程.22.(10分)若等比数列的各项为正,前项和为,且,.(1)求数列的通项公式;(2)若是以1为首项,1为公差的等差数列,求数列的前项和.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】由两直线平行确定参数值,根据充分必要条件的定义判断【详解】时,两直线方程分别为,,它们重合,不平行,因此不是充分条件;反之,两直线平行时,,解得或,由上知时,两直线不平行,时,两直线方程分别为,,平行,因此,本题中也不是必要条件故选:D2、C【解析】特称命题的否定为全称命题,所以命题的否命题应该为,即本题的正确选项为C.3、B【解析】根据题意列举出所有可能性,进而根据各类事件的定义求得答案.【详解】由题意,将2,3,4组成一个没有重复数字的三位数的情况有:{234,243,324,342,423,432},其中偶数有{234,324,342,432},大于342的有{423,432}.所以两个事件不是互斥事件,也不是对立事件.故选:B.4、D【解析】取AC的中点O,建立如图所示的空间直角坐标系,根据点到线距离的向量求法和投影的定义计算即可.【详解】由题意知,,取AC的中点O,则,建立如图所示的空间直角坐标系,则,所以,所以在上的投影的长度为,故点C到直线距离为:.故选:D5、A【解析】设出直线方程,联立抛物线方程,得到,进而得到的值,将直线的斜率之积为,用A,B点坐标表示出来,结合的值即可求得答案.【详解】设直线方程为,联立,整理得:,需满足,即,则,由,得:,所以,即,故,所以直线l为:,当时,,即直线l恒过定点,故选:A.6、A【解析】根据斜率公式求得直线的斜率,得到,即可求解.【详解】设直线的倾斜角为,由斜率公式,可得,即,因为,所以,即此直线的倾斜角为.故选:A.7、A【解析】根据存在量词命题的否定为全称量词命题判断,再利用特殊值判断命题的真假;【详解】解:因为命题p“存在一个实数﹐它的绝对值不是正数”为存在量词命题,其否定为“任意实数,它的绝对值是正数”,因为,所以为假命题;故选:A8、A【解析】根据题意可知四边形为平行四边形,设,进而得,根据四边形面积求出点M的坐标,再代入椭圆方程得出关于e的方程,解方程即可.【详解】如图,不妨设点在第一象限,由椭圆的对称性得四边形为平行四边形,设点,由,得,因为四边形的面积为,所以,得,由,得,解得,所以,即点,代入椭圆方程,得,整理得,由,得,解得,由,得.故选:A9、C【解析】根据直线平行求解即可.【详解】因为直线与直线平行,所以,即,经检验,满足题意.故选:C10、A【解析】根据椭圆的定义可得△AF1B的周长为4a,由题意求出a,结合离心率计算即可求出c,再求出b即可.【详解】由椭圆的定义知,△AF1B的周长为,又△AF1B的周长为4,则,,,,,所以方程为,故选:A.11、A【解析】求出双曲线方程,根据椭圆和双曲线的第一定义求出的长度,从而根据余弦定理求出的余弦值【详解】由题得,双曲线中,所以,双曲线方程为:,假设在第一象限,根据椭圆和双曲线的定义可得:,解得:,,所以根据余弦定理,故选:A12、A【解析】先求出渐近线方程,进而将点代入直线方程得到a,b关系,进而求出离心率.【详解】由题意,双曲线的渐近线方程为:,而一条渐近线过点,则,.故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、或【解析】根据平行线的性质进行求解即可.【详解】因为直线与平行,所以有:或,故答案为:或14、【解析】根据三视图还原几何体,由此计算出几何体的体积.【详解】根据三视图可知,该几何体为如图所示三棱锥,所以该几何体的体积为.故答案为:15、【解析】利用斜率公式可求得结果.【详解】由斜率公式可知,直线的斜率为.故答案为:.16、4【解析】根据三角形的中位线定理,结合椭圆的定义即可求得答案.【详解】椭圆的左焦点为,如图,设右焦点为,则,由N是的中点,O为得中点,,故,又,所以,故答案为:4三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)设动点,根据条件列出方程,化简求解即可;(2)设,求出圆心到轨迹上点的距离,配方求最值即可得解.【小问1详解】设动点,则,,,又,∴,化简得,即,∴动点的轨迹E的方程为.【小问2详解】设,圆心到轨迹E上的点的距离∴当时,,∴.18、(1);(2).【解析】(1)根据题意求出首项和公比即可得出通项公式;(2)可得是等差数列,利用等差数列前n项和公式即可求出.【详解】解:(1)设等比数列的公比为,则,由题意得,解得,因此,;(2),则,所以,数列是等差数列,首项,记数列前项和为,则.19、(1),(2)在单减,也单减,无增区间(3)【解析】(1)根据分母不等于0,对数的真数大于零即可求得函数的定义域,根据基本初等函数的求导公式及商的导数公式即可求出函数的导函数;(2)求出函数的导函数,再根据导函数的符号即可得出答案;(3)若对,都有成立,即,即,令,,只要即可,利用导数求出函数的最小值即可求出的范围,,,求出函数的值域,根据存在,使成立,则0在函数的值域中,从而可得出的范围,即可得解.【小问1详解】解:的定义域为,;【小问2详解】解:当时,,恒成立,所以在和上递减;【小问3详解】解:若对,都有成立,即,即,令,,则,对于函数,,当时,,当时,,所以函数在上递增,在上递减,所以,当时,,所以,所以,故恒成立,在为减函数,所以,所以,由(1)知,,所以,记,令,,则原式的值域为,因为存在,使成立,所以,,所以,综上,【点睛】本题考查了函数的定义域及导数的四则运算,考查了利用导数求函数的单调区间,考查了不等式恒成立问题,考查了计算能力及数据分析能力,对不等式恒成立合理变形转化为求最值是解题关键.20、(1)(2)【解析】(1)将几何体的表面积分成上下两个扇形、两个矩形和一个圆柱形侧面的一部分组成,分别求出后相加即可;(2)先根据条件得到面,通过平移将异面直线转化为同一个平面内的直线夹角即可【小问1详解】上下两个扇形的面积之和为:两个矩形面积之和为:4侧面圆弧段的面积为:故这个几何体的表面积为:【小问2详解】如下图,将直线平移到下底面上为由,且,,可得:面则而G是弧DF的中点,则由于上下两个平面平行且全等,则直线与直线的夹角等于直线与直线的夹角,即为所求,则则直线与直线的夹角为21、(1)圆心坐标为,半径为2(2)或【解析】(1)求得圆的标准方程,从而求得圆心和半径.(2)根据直线的斜率存在和不存在进行分类讨论,由此求得的方程.【小问1详解】圆的标准方程为:.所以圆M的圆心坐标为,半径为2.【小问2详解】因为圆M半径为2,直线l被圆M截得弦长为,由垂径定理可知M到直线距离为1.当l不垂直于轴时,设,即,则.解得,于是l的方程为,即.当l垂直于轴时,到点M

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论