版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省恒台一中2026届高二上数学期末预测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.变量与的数据如表所示,其中缺少了一个数值,已知关于的线性回归方程为,则缺少的数值为()22232425262324▲2628A.24 B.25C.25.5 D.262.某公司门前有一排9个车位的停车场,从左往右数第三个,第七个车位分别停着A车和B车,同时进来C,D两车.在C,D不相邻的情况下,C和D至少有一辆与A和B车相邻的概率是()A. B.C. D.3.“”是“方程表示椭圆”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件4.设,则有()A. B.C. D.5.点F是抛物线的焦点,点,P为抛物线上一点,P不在直线AF上,则△PAF的周长的最小值是()A.4 B.6C. D.6.下列求导错误的是()A. B.C. D.7.某市要对两千多名出租车司机的年龄进行调查,现从中随机抽出100名司机,已知抽到的司机年龄都在[20,45]岁之间,根据调查结果得出司机的年龄情况残缺的频率分布直方图如图所示,利用这个残缺的频率分布直方图估计该市出租车司机年龄的中位数大约是()A.31.6岁 B.32.6岁C.33.6岁 D.36.6岁8.如图,已知,分别是椭圆的左、右焦点,现以为圆心作一个圆恰好经过椭圆的中心并且交椭圆于点,.若过点的直线是圆的切线,则椭圆的离心率为()A. B.C. D.9.中国剪纸是一种用剪刀或刻刀在纸上剪刻花纹,用于装点生活或配合其他民俗活动的民间艺术.如图所示的圆形剪纸中,正六边形的所有顶点都在该圆上,若在该圆形剪纸的内部投掷一点,则该点恰好落在正六边形内部的概率为()A. B.C. D.10.如图,空间四边形OABC中,,,,点M在上,且满足,点N为BC的中点,则()A. B.C. D.11.若直线与直线垂直,则()A.6 B.4C. D.12.等比数列的前项和为,前项积为,,当最小时,的值为()A.3 B.4C.5 D.6二、填空题:本题共4小题,每小题5分,共20分。13.已知双曲线M的中心在原点,以坐标轴为对称轴.从以下三个条件中任选两个条件,并根据所选条件求双曲线M的标准方程.①一个焦点坐标为;②经过点;③离心率为.你选择的两个条件是___________,得到的双曲线M的标准方程是___________.14.若分别是平面的法向量,且,,,则的值为________.15.命题“,”为假命题,则实数a的取值范围是______16.若直线与圆有公共点,则b的取值范围是_____三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列{an}满足*(1)求数列{an}的通项公式;(2)求数列{an}的前n项和Sn18.(12分)已知一张纸上画有半径为4的圆O,在圆O内有一个定点A,且,折叠纸片,使圆上某一点刚好与A点重合,这样的每一种折法,都留下一条直线折痕,当取遍圆上所有点时,所有折痕与的交点形成的曲线记为C.(1)求曲线C的焦点在轴上的标准方程;(2)过曲线C的右焦点(左焦点为)的直线l与曲线C交于不同的两点M,N,记的面积为S,试求S的取值范围.19.(12分)计算:(1)求函数(a,b为正常数)的导数(2)已知点P在曲线上,为曲线在点P处的切线的倾斜角,则的取值范围20.(12分)已知是等差数列,其n前项和为,已知(1)求数列的通项公式:(2)设,求数列的前n项和21.(12分)已知等差数列的前项和为,数列是等比数列,,,,.(1)求数列和的通项公式;(2)若,设数列的前项和为,求.22.(10分)如图,在直三棱柱中,,,.M为侧棱的中点,连接,,CM.(1)证明:AC平面;(2)证明:平面;(3)求二面角的大小.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】可设出缺少的数值,利用表中的数据,分别表示出、,将样本中心点带入回归方程,即可求得参数.【详解】设缺少的数值为,则,,因为回归直线方程经过样本点的中心,所以,解得.故选:A2、B【解析】先求出基本事件总数,和至少有一辆与和车相邻的对立事件是和都不与和车相邻,由此能求出和至少有一辆与和车相邻的概率【详解】解:某公司门前有一排9个车位的停车场,从左往右数第三个,第七个车位分别停着车和车,同时进来,两车,在,不相邻的条件下,基本事件总数,和至少有一辆与和车相邻的对立事件是和都不与和车相邻,和至少有一辆与和车相邻的概率:故选:B3、B【解析】根据方程表示椭圆,且2,再判断必要不充分条件即可.【详解】解:方程表示椭圆满足,解得,且2所以“”是“方程表示椭圆”的必要不充分条件.故选:B4、A【解析】利用作差法计算与比较大小即可求解.【详解】因为,,所以,所以,故选:A.5、C【解析】由抛物线的定义转化后求距离最值【详解】抛物线的焦点,准线为过点作准线于点,故△PAF的周长为,,可知当三点共线时周长最小,为故选:C6、B【解析】根据导数运算求得正确答案.【详解】、、运算正确.,B选项错误.故选:B7、C【解析】先根据频率分布直方图中频率之和为计算出数据位于的频率,再利用频率分布直方图中求中位数的原则求出中位数【详解】在频率分布直方图中,所有矩形面积之和为,所以,数据位于的频率为,前两个矩形的面积之和为,前三个矩形的面积之和为,所以,中位数位于区间,设中位数为,则有,解得(岁),故选C【点睛】本题考查频率分布直方图的性质和频率分布直方图中中位数的计算,计算时要充分利用频率分布直方图中中位数的计算原理来计算,考查计算能力,属于中等题8、A【解析】由切线的性质,可得,,再结合椭圆定义,即得解【详解】因为过点的直线圆的切线,,,所以由椭圆定义可得,可得椭圆的离心率故选:A9、D【解析】设圆的半径,求出圆的面积与正六边形的面积,再根据几何概型的概率公式计算可得;【详解】解:设圆的半径,则,则,所以,所以在该圆形剪纸的内部投掷一点,则该点恰好落在正六边形内部的概率;故选:D10、B【解析】由空间向量的线性运算求解【详解】由题意,又,,,∴,故选:B11、A【解析】由两条直线垂直的条件可得答案.【详解】由题意可知,即故选:A.12、B【解析】根据等比数列相关计算得到,,进而求出与,代入后得到,利用指数函数和二次函数单调性得到当时,取得最小值.【详解】显然,由题意得:,,两式相除得:,将代入,解得:,所以,所以,,所以,其中单调递增,所以当时,取得最小值.故选:B二、填空题:本题共4小题,每小题5分,共20分。13、①.①②或①③或②③②.或或【解析】选①②,根据焦点坐标及顶点坐标直接求解,选①③,根据焦点坐标及离心率求出即可得解,选②③,可由顶点坐标及离心率得出,即可求解.【详解】选①②,由题意则,,,双曲线的标准方程为,故答案为:①②;,选①③,由题意,,,,双曲线的标准方程为,选②③,由题意知,,,双曲线的标准方程为.故答案为:①②;或①③;或②③;.14、-1或-2【解析】由题可得,即求.【详解】依题意,,解得或.故答案为:或.15、【解析】写出原命题的否定,再利用二次型不等式恒成立求解作答.【详解】因命题“,”为假命题,则命题“,”为真命题,当时,恒成立,则,当时,必有,解得,所以实数a的取值范围是.故答案为:16、【解析】直线与圆有交点,则圆心到直线的距离小于或等于半径.【详解】直线即,圆的圆心为,半径为,若直线与圆有交点,则,解得,故实数取值范围是.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)根据递推关系式可得,再由等差数列的定义以及通项公式即可求解.(2)利用错位相减法即可求解.【小问1详解】(1),即,所以数列为等差数列,公差为1,首项为1,所以,即.【小问2详解】令,所以,所以18、(1);(2)﹒【解析】(1)根据题意,作出图像,可得,由此可知M的轨迹C为以O、A为焦点的椭圆;(2)分为l斜率存在和不存在时讨论,斜率存在时,直线方程和椭圆方程联立,用韦达定理表示的面积,根据变量范围可求面积的最大值﹒【小问1详解】以OA中点G坐标原点,OA所在直线为x轴建立平面直角坐标系,如图:∴可知,,设折痕与和分别交于M,N两点,则MN垂直平分,∴,又∵,∴,∴M的轨迹是以O,A为焦点,4为长轴的椭圆.∴M的轨迹方程C为;【小问2详解】设,,则的周长为当轴时,l的方程为,,,当l与x轴不垂直时,设,由得,∵>0,∴,,,令,则,,∵,∴,∴.综上可知,S的取值范围是19、(1)(2)【解析】(1)根据导数的运算法则,结合复合函数的求导法则,可得答案;(2)求出函数的导数,结合基本不等式求得导数的取值范围,根据导数的几何意义结合正切函数的单调性,求得答案.【小问1详解】由题意得:;【小问2详解】,由于,故,当且仅当时取等号,故,则P处的切线的斜率,由为曲线在点P处的切线的倾斜角可得,由于,故的取值范围为:.20、(1);(2).【解析】(1)利用等差数列的基本量,结合已知条件,列出方程组,求得首项和公差,即可写出通项公式;(2)根据(1)中所求,结合裂项求和法,即可求得.【小问1详解】因为是等差数列,其n前项和为,已知,设其公差为,故可得:,,解得,又,故.【小问2详解】由(1)知,,又,故.即.21、(1),;(2).【解析】(1)设等差数列的公差为,等比数列的公比为,根据题意列出表达式,解出公比和公差,再根据等差数等比列的通项公式的求法求出通项即可;(2)根据第一问得到前n项和,数列,分组求和即可.解析:(1)设等差数列的公差为,等比数列的公比为,∵,,,,∴,∴,,∴,.(2)由(1)知,,∴,∴.22、(1)证明见详解;(2)证
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 江西省南昌市2026届九年级上学期期末测试道德与法治试卷(含答案)
- 黑龙江省齐齐哈尔市部分学校2025-2026学年高一上学期1月期末英语试卷(含答案)
- 福建省宁德市2025-2026学年高三上学期期末考试语文试题(含答案)
- 马上有喜市-2026马年游园打卡、年货大集
- 有限空间作业安全培训
- 钢柱安装技术操作要领
- 钢结构工程验收标准解析
- 2026年铜陵市中医医院招聘5名护理人员笔试备考试题及答案解析
- 2026广州银行人才招聘笔试备考题库及答案解析
- 2026广东佛山市顺德区均安镇国资企业副总经理岗位招聘4人备考考试试题及答案解析
- 注塑部年终总结和来年计划
- 江西省赣州市2024-2025学年高一上学期1月期末考试英语试卷(含答案无听力音频无听力原文)
- 《我国中药饮片产业国际竞争力探析》9200字(论文)
- 检验项目管理培训
- 《医学影像检查技术学》课件-膝关节、髋关节X线摄影
- 我的阿勒泰我的阿勒泰
- 广东省佛山市南海区2023-2024学年七年级上学期期末数学试卷(含答案)
- 全套教学课件《工程伦理学》
- 固定式压力容器年度检查表
- 装配式建筑可行性研究报告
- 新人教部编版一年级下册生字表全册描红字帖可打印
评论
0/150
提交评论