版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
AStrategicApproachforUtilityCompaniesLeveragingGeoAI:/me01IntroductionIntroductionThe
primaryobjectiveofutilitycompanies
istoeffectively
planandmanage
their
infrastructuretoensure
reliabledeliveryofessentialservices
likewater,electricity,natural
gasandtelecommunicationto
itscustomers.
Geospatial
data
accuratelymapsutilitiesonthesurface
ofthe
earth,
alongwith
its
technical
and
physical
parameters.
Therefore,
it
iscriticalforeffective
infrastructure
management,enablingprecise
supervisionofassetssuchas
powerlines,pipelines,
andtelecom
towerswithintheelectricity,water,gasandtelecommunication
sectors.
Ithelps
indecision
making
byassisting
intheoptimisation
ofnetworkconfigurations,
identifying
upgrading
needs
andacceleratingfaultdetectionand
maintenance
processes.GeospatialandAImarketgrowth:A
rapidtransformationTheacceleratingadoptionofgeospatialand
AItechnologieshighlights
theirexpanding
roleacrossindustries,particularly
i
n
utilitiesand
energy.Thisisthe
idealmomenttoembraceand
leverage
GeospatialArtificialIntelligence(GeoAI)which
is
an
integrationofGeospatial
dataandanalysiswith
AItechniquesandtechnologiesforextracting
meaningfulinsightsfromthedata.The
GeospatialAImarket
in
Middle
Eastand
NorthAfricarecordedavalueofUS$57.3mn
in
2023and
is
anticipated
toreach
approximately
$222.8mn
by2031,growing
at
a
CAGR
of
18.5%
during
the
forecast
period
2024-2031.6
Thisindicatesthetransformative
possibilityit
holdsfortheentire
region.Inthe
nextfewsectionswe
willfocusonunderstandingdifferentcomponentsofGeoAI
,differentuse
cases,
challenges
in
implementingGeoAIandfuturetrendsfortheregionalutilitiessector
inMiddle
East.Utilities
&energyAImarket:
From$15.45B(2024)to$75.53B(2034).Globalgeospatialmarket:Valuedat$560.18B
in2024,projectedtohit
$1Tby2028(CAGR15.9%).Keycontributor:Theutilitiessector(electricity,water,gas)
holds18%marketshare.MiddleEastgeospatialmarket:Expectedtogrowfrom$1.16B(2024)to$1.71B(2029)(CAGR
8.15%),drivenbysmartgrids,meters,andasset
management.GlobalAImarket:Estimatedat$196.63B(2023),setto
soarto$1.81Tby2030
(CAGR
36.6%).MiddleEastAI
market:Growingfrom$11.92B(2023)to$166.33B(2030),fueledbynationalAIstrategiesandsectoradoption.02Convergenceof
geospatial
analyticswithAIArtificial
IntelligenceProblemSolving&Search
StrategiesRoboticRepresentationPl
anningand
SchedulingSpeechVisual
PerceptionReinforcement
learningAutom
atic
Linear/LogisticNeuralNetworks
RegressionEnsemble
Adaptive
Resonance
K-MeansMethods
Theory(ART)
Network
(RNN)
ClusteringMultilayerAnomaly
Perceptro
ns
(M
LP)
Autoencoders
Radial
Basis
DecisionDetection
Functi
onNetworks
treesModulDeep
learningLong
Short
-TermGenerativeMemory
Networks
Adversarial
Networks(LSTM)
(GAN)TransformerModels(BERT,GPTetc)Recurrent
NeuralNetworks
(RNN)Deep
BeliefNetworks
(DBN)ArtificialIntelligenceMachineLearningDeepLearningGenerativeAIArtificial
Intelligence(AI)isthescienceandengineeringofmaking
intelligent
machinesthat
cansimulatehuman
learning,comprehension,problemsolving,decision
making,creativity
andautonomy.MachineLearning
(ML)isasubsetofAIwhich
involves
creating
models
by
training
an
algorithm
to
learn
patterns,make
predictions
ordecision
basedondatawithout
being
explicitly
programmed.
DeepLearning
isasubsetofmachinelearningthat
uses
multilayered
neural
networks,
that
is
inspired
by
how
thehuman
brainoperatestotakecomplexdecisions.
GenerativeAI(GenAI)
is
a
subset
of
DeepLearningwhichcan
produce
newcontentliketext,
imagery,
audio,andsyntheticdata
basedonthe
inputsfrom
humans
intheform
ofnatural
language
prompts.Geospatialanalytics
isthescienceofanalysinggeographicalandspatialdatato
identify
patterns,trends
andrelationshipsbetweendifferentassets,
peopleor
places.
Itintegrates
remote
sensing,
GeographicInformationSystem
(GIS),Global
PositionSystem
(GPS)
andbigdatatoanalyse
location-basedinformation
across
multiple
dimensions
toproduceoutputsintheform
ofmaps,
graphs,
statistics
and
cartograms.ConvergenceofgeospatialanalyticswithAI
Figure
1:GeospatialAnalytics
Figure2:Artificial
IntelligenceConvolutional
Neural
NetworksDeep
Reinforcement
LearningDeepAutoencodersSpatiotemporalAnalysisBig
GeospatialdataAnalysisNatural
Language
Processi
ng
(NLP
)I
nte
lligentSel
f
Organising
MapBolt
zmannMachinesSuitabilityAnalysisProximity
AnalysisNetworkAnalysisHotspotAnalysisClusterAnalysisVectorAnalysisar
Neural
NetworksHopfield
NetworksPrincipalComponentAnalysis(PCA)MachineLearning3D
AnalysisK-NearestNeighbours
(KNN)Supportvectormachines
(SVM
)AutomatedProgram
mingNaiveBayes
Classificat
ionExpertSystemsRandom
ForestRecurrentNeuralRecognitionReasoningKnowlageParameterGeospatial
AnalyticsArtificial
Intelligence
(AI)Geospatial
ArtificialIntelligence
(GeoAI)FocusUnderstanding
spatialrelationships,
patterns,and
trendsSolving
general
problems
using
intelligent
algorithms
andtechniques
across
domainsSolving
geospatial
problems
usingAI/ML
techniquesPrimary
datatypesSpatial
data
(vector,
raster)and
non-spatial
attributesAnytype
of
data:
text,
images,
video,
numerical,
categorical,
etcSpatial
andtemporal
data
with
AI-ready
formatsKey
techniquesSpatial
statistics,
geospatialmodelling,
cartographyMachine
learning,
deeplearning,
natural
languageprocessing,
computer
visionDeep
learning,
machinelearning,
computer
visionapplied
to
spatial
dataOutputsMaps,
spatial
models,
reports
and
dashboardsPredictions,classifications,
recommendations,decisionsupportsystemsPredictive
spatial
models,automated
feature
extraction,
intelligent
insightsAutomationLimited;
manual
intervention
is
neededFully
automated,dependingon
the
system's
design
andcomplexityHigh
automationthroughAI/MLmodels
and
neuralnetworksScalabilityModerate;
dependent
ongeospatial
data
tools
andprocessingHighly
scalable
using
cloudand
distributed
computing
environmentsHigh;leverages
AI-drivenscalability
with
cloud
anddistributed
computingComplexityRelatively
simpler;
focuses
on
spatial
data
analysisworkflowsVaries;
can
rangefrom
simple
algorithms
to
overly
complex
neural
networksMore
complexdue
tointegration
ofAI/ML
withgeospatial
dataUsage
exampleOptimising
power
line
routesAI
Chatbotfor
citizens
foroutage
reportingPredictive
maintenance
ofpower
lines
using
droneimageryGeoAI
isan
amalgamationofgeospatialdata,science,
andtechnologywith
AIto
extract
meaningful
insightsandsolve
spatial
problems.If
weconsiderAIasthedevelopmentofmachinesthat
canthink
and
reason
like
humans,
GeoAI
represents
anintersectionofAIandgeographyindevelopingadvancedsystems
that
make
use
of
geospatial
big
data
to
perform
spatial
reasoningandlocation-basedanalysis,
much
likehumans.
Figure3:GeospatialArtificial
Intelligence(GeoAI)Whileeachofthesetechnologieshasunique
strengths,
limitations
andapplications,
it
is
crucial
to
understand
how
theycanbeeffectively
leveragedtoaddress
businesschallenges
inthe
utilitysector.
The
table
below
provides
acomparativeoverviewofkey
parameters
andguidanceonselectingthe
appropriatetechnology.ArtificialIntelligenceGeospatial
AnalyticsGeoAIGeospatial
analytics
gains
significantpower
whenenhancedby
AI-driven
capabilities,
such
asobject
detection
fromimagery,automation,scalabilityforlargedatasets,improvedaccuracy,fasterprocessingand
immersive
technology.GeoAIcombinespredictive,prescriptiveinsightswithgeospatialdatafrom
drones,
satellite
imageryand
helps
to
solve
theproblem
inspatialcontext.
Italso
helpstoautomategeospatial
analyticsto
make
themautonomous
andwork
with
minimum
humansupervision.
GeoAIbrings
thegeographiccontexttosolve
realworld
problems
using
multiple
AItechniquesobjectdetection,spatialoptimisation
,
natural
language
processing,integration
with
multiple
data
sources,etc.GeoAIapplicationsspanacross
sectorssuchas
urban
planning(smartcity
development),
utilities
(pipeline
monitoring),
agriculture(precisionfarming),transportation(traffic
management),environmentalconservation(climatechangemodelling),andpublichealth
(epidemictracking),enablingdata-driven
decision-making
andenhanced
operationalefficiency.However,thefocusofthis
paperwillbeapplications
ofGeoAIfor
utilitysector,
including
electricity,water,gas
andtelecommunication.ComponentsofGeoAIfortheutilitysector03Thetable
belowshows
howeachcomponentcan
be
supported
by
industry
standard
open
source
or
proprietary
tools/platforms.ComponentSupported
tools
and
platformsGeospatial
dataRaster
data
can
be
created
from
different
types
of
sensors
like
Satellite,
Drone,
Aerial,
etc.
Vector
data
can
be
created
bydigitizing
raster
data
or
by
taking
measurements
of
earth’s
surface
or
assets
through
different
surveying
techniques
like
total
station,
GPS
,
LiDAR,
etc.Geospatial
analyticsOpen-source
platforms:
QG
IS,
GRASS
GIS,
PostGIS
Geo
Server,
SAGA
GIS,
R
with
spatial
packagesProprietary
platform:
Esri
ArcGIS,
Hexagon
Geo
media,
ERDAS
IMAGINE,BentleyMaps,
etc.AI,
ML,
DeepLearning
algorithms,techniquesOpen-source
platforms:
TensorFlow,PyTorch
,
Apache
Spark
MLlib
,
Scikit-Learn.Proprietary
platform:
Vertex
AI,
AWS
Sage
Maker
,
Azure
AI,
IBM
Watson
,
OpenAI
GPT
(ChatGPT),
NVIDIA
Jetson,
etc.Data
Processingand
StorageOpen-source
platforms:OpenStack,CloudStack,
Eucalyptus,Open
Horizon,Edge
X
Foundry,
etc.Proprietary
platform:
Amazon
Web
Services
(AWS),
Microsoft
Azure,
Cloud
Platform
(GCP),IBM
Cloud,
Oracle
Cloud,
NVIDIA
Jetson,MicrosoftPercept,
etc.Visualisation
toolsOpen-source
platforms:
QG
IS,
GRASS
GIS,
PostGIS
Geo
Server,
SAGA
GIS,
R
with
spatial
packages,
Cesium,
Unity,
Earth,
etc.Proprietary
platform:
Esri
ArcGIS,
Hexagon
Geo
media,
ERDAS
IMAGINE,
Bentley
Maps,
PowerBI,
Tableau,Microsoft
HoloLens,etc.Data
integration
andinteroperabilitystandardsDataIntegrations
is
supportedby
the
above
Enterprise
applicationsin
Open-source
and
Proprietary
platforms.Interoperability
standards
are
followed
by
most
of
the
industry
standards
platforms
include
International
Organization
for
Standardization
(ISO),
World
Wide
Web
Consortium
(W3C)
and
Open
Geo
spatial
Consortium
(OGC)
standardsEthical
andregulatoryframeworksInternational
regulations
which
dealsGlobal
Ethical
andRegulatoryFrameworksinclude
Organisation
for
EconomicCo-operation
andDevelopment
(OECD)
AIPrinciples,UNESCO
AIEthics
RecommendationDataprotection
andPrivacy
laws:General
DataProtection
Regulation(GDPR),
Personal
DataProtection
Law(PDPL)Cyber
laws:National
Institute
of
Standards
and
Technology
(NIST)
CybersecurityFramework,
KSAEssential
Cybersecurity
Controls
(ECC)ComponentsofGeoAIforthe
utilitysectorThe
recipefordeveloping,implementinganeffectiveandrobust
GeoAIsolution
for
utilitysectorshould
includeall
the
keyingredients
likegeospatialdata,geospatialanalytics,AI,
MLalgorithms,data
processing,storage,
visualisationtools,data
integration,interoperabilitystandards
andethical
regulatoryframeworks.
Figure4:
ComponentsofGeoAIforthe
utilitysectorVisualisationtoolsMaps,
charts,
graphs,infographics,
3D
models,
digitaltwin,AR/VR
modelsComponentsof
GeoAI
forGeospatial
AnalyticsNetworkanalysis,
outageanalysis,
upstream
trace,downstreamtrace,
serviceareaanalysis,
leakdetectionGeospatial
dataVector
data:Water
pipelines,
electriccables,
valves
raster
data:
droneimagesoftransmissiontowerAI,
ML
algorithmsAutoencoders
for
anomaly
detectionRandom
Forest
algorithmsforanalyzing
historical
dataDataprocessing
&storageCloudcomputing,
big
dataandedge
computingcapabilitiesEthical
&
regulatoryframeworksUNESCOAIethics
recommendation,PDPL,
KSA
essential
cybersecuritycontrolsDataIntegration
&interoperabilitystandardsISO,W3C,
OGC
standardsutility
sectorGeoAIusecasesin
utilitysector04GeoAIusecases
inthe
utilitysectorThe
proliferationofGeoAIin
MiddleEastforthe
utilitysectorhas
been
primarily
driven
by
region’s
urgentrequirementsforsustainabledevelopment,efficientresource
managementandtechnological
modernisation.GeoAIis
increasinglyrecognised
as
keyenablerinaddressingcriticalchallengesacross
utility
sectors
while
aligning
withregionalaspirationsforsustainableeconomies
andsmartcities.Followingaresomeoftheapplications
ofGeoAIinthe
utilitysector:Inthefirststepthedrone
capturesthousandsofimagesofthe
powerlines.
Drones
can
reachand
cover
areas
of
transmission
lineswhicharenotaccessibleby
roadwaysforthemaintenanceteam.Inthesecondstep,thousands
ofgeotagged
imagesarestored
inthegeospatial
databasewith
locationalinformation.The
user
canclick
onanylocation
onthe
map
andviewthe
images
ofthe
power
lines
at
that
location.This
helpstoovercomethechallengeofmanuallyviewing
all
images
andaccurately
identify
broken
insulators.Inthe
third
step,
deep
learning
algorithmswhich
are
trained
on
images
of
broken
insulators,flashed
insulators
and
similar
scenarios
can
detect
the
anomaly
from
thousands
of
images
in
few
minutes,
thus
saving
huge
time,
efforts
andcostwhile
beingaccurate.Inthefourth
step,deeplearningalgorithmshighlightbroken
insulatorswith
different
colours
by
plotting
them
on
mapfor
easy
identification.The
usercanclick
onthemap
andverifythe
image
ofthe
broken
insulators.Inthefinal
step,the
map
locationswith
photosaresenttothe
maintenancefieldcrew
on
their
mobile
phones.
Thisnot
onlyenablesthemtoaccuratelyreachthelocationofrepair
butalsoensures
that
they
carry
appropriatetools
andreplacementdevicesforcomplete
thejob.Thisworkflow
helpsthepowerutilitiesteamtoaccuratelyidentify
exact
locationsofthe
broken
insulators
for
focusedmaintenancewhichsavestime,effort
andcosts.Followingaresomeofthesuccessstories
demonstratinghowdifferent
utility
companies
have
implemented
GeoAI.Oneofthemajorgasnetworkoperators
in
Europe
usedacombination
ofoptical
and
radar
satellite
imageryformonitoringover
160kmofhigh-pressuregaspipeline,whichisrouted
through
forests,fields
aswell
as
through
built-
upareas.VariousGeoAItoolswere
employedfortimeseriesanalysis,change
detection
andotherspatial
analyses,
revealinggrounddeformations
inpipelineareas.These
deformationswere
classified
intocategories
rangingfromgreaterthan2cm/yeartoless
than
10
cm/year.Vegetationexposuretopipelineswere
classifiedfrom
3mtolessthan
<10m
basedon
the
proximity
ofthevegetation
to
thepipelines.The
useofGeoAItoolssavedthem
operation
maintenance
cost,
time
and
provided
them
insights
on
their
pipelinewhichweresuspectabletorisk
bygrounddeformationandvegetationintimely
manner.Theywereabletotake
correctiveactionson
identifiedfocusedareas.7Casestudy:
Detecting
brokeninsulatorsonpower
linesusing
GeoAIElectrictransmissionanddistributioncompanies
manage
powerlinesthat
usuallyspanacross
largeareas,
usually
thousandsofkilometers.Itisoften
a
daunting
taskforthe
maintenance
team
to
identify
manually
broken
insulators
byvisual
inspection.Withtheuseofdronesthatcapture
images
of
the
power
lines,
the
laborious
taskofvisualinspection
iscompleted.Thefigurebelowshowsaworkflow
of
using
GeoAItools
to
automatethe
process
of
identifying
locationsofthebroken
insulatorwithevidence.Outputon
MapThe
output
of
theDeepLearningAlgorithmisplotted
onMap.Clicking
onmap
shows
thebroken
insulatorsFocusedMaintenanceThe
broken
insulator
photo
&
geospatiallocation
is
sent
tomaintenance
teamon
mobileGeotaggedimagesGeotaggedimages
of
the
transmissionlines
are
stored
inGeo
spatialdatabaseDroneCaptureDrone
capturesthousands
ofimages
of
Powerlines
whichcovershundredsof
kmsAsset
repaircompleteThe
Broken
Insulatoris
fixed
saving
time,
efforts
&
costDeepLearningDeepLearningmodel
is
used
todetect
brokeninsulatorsA
leadingtelecommunication
in
MiddleEastfacedchallengesinoptimising
their
network
performancewhich
includedidentifyingweaksignalzones,
managingnetworktrafficduring
peakevents
likeconcerts
orsports
matches,
planning
efficient5Gdeploymentacross
diverse
urban
andrurallandscapes.The
company
implementeddifferent
GeoAI
use
caseslikeCallroutingoptimisationwhichdeployed
ML
algorithmstodirectcallsthrough
the
least
congested
routes,
ensuring
uninterruptedcommunication.
Realtimespatial
analyticswere
usedduring
sports
events,
musicconcerts
to
monitoruserdensityandadjustnetwork
resourcesin
real
timeto
maintain
optimal
performance.BydeployingdifferentGeoAItoolsthecompanysaw
a25%
reduction
indeployment
costs
through
better
network
planning.Theyalsoobserveda20%increase
inmobile
internet
speedswhich
resulted
in
improving
services
and
resultedinusersatisfaction.The
company
alsoobservedfaster
response
times
tooutages
and
disruptions,
reducing
servicedowntime.8ChallengesinGeoAIImplementationforutilities05ChallengesinGeoAIimplementationfor
utilitiesImplementingGeoAIsolutionforutilityprovidersoffersthe
possibility
of
increasing
efficiency,
availing
resourcesappropriately,andimprovingthe
levelofintelligence
inthe
use
ofavailable
geo-spatial
data.
However,the
approachfor
achievingthesegoals
isfraughtwithdifferentchallenges.These
includecontrolling
large
anddispersed
datasets,assimilatingGeoAIsolutionswithexistingonesandhighinitial
implementationcosts.
More
so,
utilities
aredealingwith
internal
conflicts,shortageofAIskills
andisexposedtoheavyregulations.
Othergrey
areas,
namely
AI
model
biasand
invasionofprivacy
alsoaddcomplications.
Meetingthesechallengeswillrequire
defining
clear
strategiesthat
allowfor
phasedimplementationofthechanges,clearcommunicationof
the
changes,
ease
of
expansion
as
well
ascollaborationbetweenthetechnology
providersandtheusers.01
Datachallenges•
Qualityand
accuracy:
Manyutilityproviders
lackup-to-datedata;completeness
ofthe
data
is
also
an
issue
alongwithfragmenteddata.•
Integration:Consolidatingdatafrom
disparatesourceslikeIoT,
geospatial
systems,Asset
management,
CRM,
ERP
andotherlegacysystems
isachallenge
duetoabsenceofstandardised
data
models.•Volumemanagement:Thevolume
of
data
from
remote
sensing
sources
likedrones,
satellites,field
survey,
IOT
isgrowingcontinuouslyandprocessingandmanagingthe
data
effectively
is
challenging.02Technologyandinfrastructure•
Legacysystem:
Itisdifficulttointegratewith
legacysystemsdueto
lack
of
interoperability.•
Initialinvestments:
ImplementationofGeoAIsystem
my
require
initial
investmentsortechnology
refresh
whichcanaddadditional
coststo
existing
IT
budget.•
Scalability:The
utilitygridsexpand
itisessentialto
maintainthe
scalability
of
GeoAI
solutions
andassociated
techstack.03Organisational
barrier•
Resistanceto
change:
Employees
may
resistAIadoptionduetounfamiliarity
ofthetechnology
andfearof
job
replacement.•
Lackofexpertise:The
utilitycompanies
may
nothave
expertsin
Geospatial
andAItechnology
in
house,
whichmakesthey
relyon
external
vendors.•Workflowdisruptions:
Mundanetaskswhichcan
be
automated
using
AI
may
temporarily
disrupts
the
existingworkflowcreatingconfusionamongthestaff.04Regulatoryandsecurityconcerns•
Data
privacy:
Itisnecessarytobecautiousabout
privacy
concerns
when
collecting
consumer
data
and
using
it
foranalytical
purposes.•
Cybersecurityrisk:
SinceGeoAIsystemareintegratedtocritical
utility
infrastructure
they
may
be
vulnerable
tocyberattacksandhencerequiredeffectivesecurity
measures.•
Regulatorycompliance:
Itisimportanttoensurethat
GeoAIsystems
meetthelocal
and
international
standards,whichmayvary
insome
parts
ofthe
world.05Interpretabilityof
AI
models•
Complexity:Advanced
GeoAImodelsareusuallybasedondeep
learning
andsometimes
it
is
difficultto
explaintheirdecisionsmakingthem
act
like“black
box”
.•Accountability:Lack
ofinterpretability
can
leadto
operational
risks
and
reduced
trust
among
stakeholders,especiallyinsafety-criticalapplications.
Henceitis
importantto
use
Employing
Explainable
AI
(XAI)
and
using
interpretable
models,when
possible,toaddresstheseconcerns.06Ethical
Implications•
Bias:Thetrainingsetsused
inAImay
contain
different
types
of
biases
likegeographical,
selection,
coverage,
reporting,algorithmic,
etc.Itisimportanttoconsiderlocalisation
aspects
andother
relevant
aspects
fortargeted
implementationwhenconsidering
trainingdatasets•Job
replacement:Automationofsurvey,field
inspections
may
result
inworkforce
reduction
which
is
likely
to
raise
concernsamongtheworkforces.•
Fairness:
Itisimportanttodistributethe
benefitsderivedfromAIderived
insights
e.g.
uninterrupted
power
supplyinruralandurban
areas
remains
a
challenge.Empoweringutilities
through
GeoAI06Problemdefinitionandstrategicalignment1.IdentifycorechallengesIdentifycore
businesschallenges.Classifythem
intodifferentcategoriesofplanning,operations,maintenance,
regulatory.2.
Alignwithbusiness
goalsAlignGeoAIinitiativeswithorganisationstrategicgoalsandobjectives.AlignGeoAIinitiativeswithdifferentstakeholders
inthevalue
chain.3.Maturity
levelassessmentCurrentstateassessmentinfouraspects:people,
process,
data
andtechnology.Benchmarkingyourmaturityagainstpeers.Identifygapsandareasforimprovementtoalignwith
best
practices.Outlinestepsforadvancingtothe
nextmaturitystage.Emp
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030细胞治疗产品商业化生产瓶颈与破局路径报告
- 2025-2030细胞收获与分离设备技术迭代方向
- 2025-2030细胞培养肉产业化面临的监管挑战评估研究报告
- 2025-2030纽埃交通运输行业现状分析及供应链优化策略研究与发展规划报告
- 2025-2030纸品行业市场供需格局发展趋势规划分析研究分析
- 2025-2030童装品牌中小学生校服质量监管标准规范与C认证测试市场分析报告
- 2025-2030突尼斯棉纺织行业市场发展现状供需分析及投资评估规划分析研究报告
- 2025-2030知识产权法律诉讼服务创新及海外维权策略
- 2025-2030真空绝缘开关设备研发行业市场现状供需分析及投资评估规划分析研究报告
- 2025-2030直播电商行业市场分析及投资并购策略研究报告
- 医院药房医疗废物处置方案
- 高血压达标中心标准要点解读及中心工作进展-课件
- 某经济技术开发区突发事件风险评估和应急资源调查报告
- 金属眼镜架抛光等工艺【省一等奖】
- 混凝土质量缺陷成因及预防措施1
- 《药品经营质量管理规范》的五个附录
- 试论如何提高小学音乐课堂合唱教学的有效性(论文)
- 机房设备操作规程
- ASMEBPE介绍专题知识
- GB/T 15087-1994汽车牵引车与全挂车机械连接装置强度试验
- GB/T 10922-200655°非密封管螺纹量规
评论
0/150
提交评论