版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
贵州省铜仁市乌江学校2026届高二上数学期末学业水平测试试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若,则图像上的点的切线的倾斜角满足()A.一定为锐角 B.一定为钝角C.可能为 D.可能为直角2.如图,已知二面角平面角的大小为,其棱上有、两点,、分别在这个二面角的两个半平面内,且都与垂直.已知,,则()A. B.C. D.3.函数的递增区间是()A. B.和C. D.和4.不等式表示的平面区域是一个()A.三角形 B.直角三角形C.矩形 D.梯形5.在中,角A,B,C的对边分别为a,b,c.若,,则的形状为()A.直角三角形 B.等边三角形C.等腰直角三角形 D.等腰或直角三角形6.已知函数及其导函数,若存在使得,则称是的一个“巧值点”.下列选项中没有“巧值点”的函数是()A. B.C. D.7.已知椭圆的左焦点是,右焦点是,点P在椭圆上,如果线段的中点在y轴上,那么()A.3:5 B.3:4C.5:3 D.4:38.已知,则下列说法中一定正确的是()A. B.C. D.9.过点且垂直于的直线方程为()A. B.C. D.10.已知,则点关于平面的对称点的坐标是()A. B.C. D.11.在空间直角坐标系中,已知,,则MN的中点P到坐标原点О的距离为()A. B.C.2 D.312.点分别为椭圆左右两个焦点,过的直线交椭圆与两点,则的周长为()A.32 B.16C.8 D.4二、填空题:本题共4小题,每小题5分,共20分。13.圆与圆的位置关系为______(填相交,相切或相离).14.已知直线,圆,若直线与圆相交于两点,则的最小值为______15.已知抛物线:()的焦点到准线的距离为4,过点的直线与抛物线交于,两点,若,则______16.如图,在三棱锥P–ABC的平面展开图中,AC=1,,AB⊥AC,AB⊥AD,∠CAE=30°,则cos∠FCB=______________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的左、右焦点分别为,,离心率为,过的直线与椭圆交于,两点,若的周长为8.(1)求椭圆的标准方程;(2)设为椭圆上的动点,过原点作直线与椭圆分别交于点、(点不在直线上),求面积的最大值.18.(12分)已知p:,q:(1)若p是q的必要不充分条件,求实数m的范围;(2)若是的必要不充分条件,求实数m的范围19.(12分)在2021年“双11”网上购物节期间,某电商平台销售了一款新手机,现在该电商为调查这款手机使用后的“满意度”,从购买了该款手机的顾客中抽取1000人,每人在规定区间内给出一个“满意度”分数,评分在60分以下的视为“不满意”,在60分到80分之间(含60分但不含80分)的视为“基本满意”,在80分及以上的视为“非常满意”.现将他们的评分按,,,,分成5组,得到如图所示的频率分布直方图.(1)求这1000人中对该款手机“非常满意”的人数和“满意度”评分的中位数的估计值.(2)若按“满意度”采用分层抽样的方法从这1000名被调查者中抽取20人,再从这20人中随机抽取3人,记这3人中对该款手机“非常满意”的人数为X.①写出X的分布列,并求数学期望;②若被抽取的这3人中对该款手机“非常满意”的被调查者将获得100元话费补贴,其他被调查者将获得50元话费补贴,请求出这3人将获得的话费补贴总额的期望.20.(12分)已知椭圆M:的离心率为,左顶点A到左焦点F的距离为1,椭圆M上一点B位于第一象限,点B与点C关于原点对称,直线CF与椭圆M的另一交点为D(1)求椭圆M的标准方程;(2)设直线AD的斜率为,直线AB的斜率为.求证:为定值21.(12分)已知函数,且a0(1)当a=1时,求函数f(x)的单调区间;(2)记函数,若函数有两个零点,①求实数a的取值范围;②证明:22.(10分)等差数列的公差d不为0,满足成等比数列,数列满足.(1)求数列与通项公式:(2)若,求数列的前n项和.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】求出导函数,判断导数的正负,从而得出结论【详解】,时,,递减,时,,递增,而,所以切线斜率可能为正数,也可能为负数,还可以为0,则倾斜角可为锐角,也可为钝角,还可以为,当时,斜率不存在,而存在,则不成立.故选:C2、C【解析】以、为邻边作平行四边形,连接,计算出、的长,证明出,利用勾股定理可求得的长.【详解】如下图所示,以、为邻边作平行四边形,连接,因为,,则,又因为,,,故二面角的平面角为,因为四边形为平行四边形,则,,因为,故为等边三角形,则,,则,,,故平面,因为平面,则,故.故选:C.3、C【解析】求导后,由可解得结果.【详解】因为的定义域为,,由,得,解得,所以的递增区间为.故选:C.【点睛】本题考查了利用导数求函数的增区间,属于基础题.4、D【解析】作出不等式组所表示平面区域,可得出结论.【详解】由可得或,作出不等式组所表示的平面区域如下图中的阴影部分区域所示:由图可知,不等式表示的平面区域是一个梯形.故选:D.5、B【解析】直接利用正弦定理以及已知条件,求出、、的关系,即可判断三角形的形状【详解】解:在中,已知,,,分别为角,,的对边),由正弦定理可知:,所以,解得,所以为等边三角形故选:【点睛】本题考查三角形的形状的判断,正弦定理的应用,考查计算能力,属于基础题6、C【解析】利用新定义:存在使得,则称是的一个“巧点”,对四个选项中的函数进行一一的判断即可【详解】对于A,,则,令,解得或,即有解,故选项A的函数有“巧值点”,不符合题意;对于B,,则,令,令,则g(x)在x>0时为增函数,∵(1),(e),由零点的存在性定理可得,在上存在唯一零点,即方程有解,故选项B的函数有“巧值点”,不符合题意;对于C,,则,令,故方程无解,故选项C的函数没有“巧值点”,符合题意;对于D,,则,令,则.∴方程有解,故选项D的函数有“巧值点”,不符合题意故选:C7、A【解析】求出椭圆的焦点坐标,再根据点在椭圆上,线段的中点在轴上,求得点坐标,进而计算,从而求解.【详解】由椭圆方程可得:,设点坐标为,线段的中点为,因为线段中点在轴上,所以,即,代入椭圆方程得或,不妨取,则,所以,故选:A.8、B【解析】AD选项,举出反例即可;BC选项,利用不等式的基本性质进行判断.【详解】当,时,满足,此时,故A错误;因,所以,,,B正确;因为,所以,,故,C错误;当,时,满足,,,所以,D错误.故选:B9、B【解析】求出直线l的斜率,再借助垂直关系的条件即可求解作答.【详解】直线的斜率为,而所求直线垂直于直线l,则所求直线斜率为,于是有:,即,所以所求直线方程为.故选:B10、C【解析】根据对称性求得坐标即可.【详解】点关于平面的对称点的坐标是,故选:C11、A【解析】利用中点坐标公式及空间中两点之间的距离公式可得解.【详解】,,由中点坐标公式,得,所以.故选:A12、B【解析】由题意结合椭圆的定义可得,而的周长等于,从而可得答案【详解】解:由得,由题意得,所以的周长等于,故选:B二、填空题:本题共4小题,每小题5分,共20分。13、相交【解析】求两圆圆心距,并与半径之和、半径之差的绝对值比较即可.【详解】圆的圆心为,半径为,圆的圆心为,半径为,∵,∴两圆相交.故答案为:相交.14、【解析】求出直线过的定点,当圆心和定点的连线垂直于直线时,取得最小值,结合即可求解.【详解】由题意知,圆,圆心,半径,直线,,,解得,故直线过定点,设圆心到直线的距离为,则,可知当距离最大时,有最小值,由图可知,时,最大,此时,此时.故的最小值为.故答案为:.15、15【解析】易得抛物线方程为,根据,求得点P的坐标,进而得到直线l的方程,与抛物线方程联立,再利用抛物线定义求解.【详解】解:因为抛物线的焦点到准线的距离为4,所以,则抛物线:,设点的坐标为,的坐标为,因为,所以,则,则,所以直线的方程为,代入抛物线方程可得,故,则,所以故答案为:1516、【解析】在中,利用余弦定理可求得,可得出,利用勾股定理计算出、,可得出,然后在中利用余弦定理可求得的值.【详解】,,,由勾股定理得,同理得,,在中,,,,由余弦定理得,,在中,,,,由余弦定理得.故答案为:.【点睛】本题考查利用余弦定理解三角形,考查计算能力,属于中等题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)根据周长可求,再根据离心率可求,求出后可求椭圆的方程.(2)当直线轴时,计算可得的面积的最大值为,直线不垂直轴时,可设,联立直线方程和椭圆方程可求,设与平行且与椭圆相切的直线为:,结合椭圆方程可求的关系,从而求出该直线到直线的距离,从而可求的面积的最大值为.【详解】(1)由椭圆的定义可知,的周长为,∴,,又离心率为,∴,,所以椭圆方程为.(2)当直线轴时,;当直线不垂直轴时,设,,,∴.设与平行且与椭圆相切的直线为:,,∵,∴,∴距的最大距离为,∴,综上,面积的最大值为.【点睛】方法点睛:求椭圆的标准方程,关键是基本量的确定,而面积的最值的计算,则可以转化为与已知直线平行且与椭圆相切的直线与已知直线的距离来计算,此类转化为面积最值计算过程的常规转化.18、(1),;(2),【解析】解不等式,(1)由题意得,从而求得;(2)由题意可转化为是的充分不必要条件,从而得到,化简即可【小问1详解】解不等式得,是的必要不充分条件,,解得,,即实数的范围为,;小问2详解】是的必要不充分条件,是的充分不必要条件,故,解得,,即实数的范围为,19、(1)65分(2)①分布列答案见解析,数学期望:;②172.5元【解析】(1)由图可知中位数在第二组,则设中位数为,从而得,解方程可得答案,(2)①由题意可求得“不满意”与“基本满意”的用户应抽取17人,“非常满意”的用户应抽取3人,则X的可能取值分别为0,1,2,3,然后求出对应的概率,从而可求得其分布列和期望,②设这3人获得的话费补贴总额为Y,则,然后由①结合期望的性质可求得答案【小问1详解】这1000人中对该款手机“非常满意”的人数为.由频率分布直方图可得,得分的中位数为,则,解得,所以中位数为65分.【小问2详解】①若按“满意度”采用分层抽样的方法从这1000名被调查者中抽取20人,则“不满意”与“基本满意”的用户应抽取人,“非常满意”的用户应抽取人,X的可能取值分别为0,1,2,3,,,,,则X的分布列为X0123P故.②设这3人获得的话费补贴总额为Y,则(元),所以元,故这3人将获得的话费补贴总额的期望为172.5元.20、(1)(2)证明见解析【解析】(1)根据椭圆离心率公式,结合椭圆的性质进行求解即可;(2)设出直线CF的方程与椭圆方程联立,根据斜率公式,结合一元二次方程根与系数关系进行求解即可.【小问1详解】(1),,∴,,,∴;【小问2详解】设,,则,CF:联立∴,∴【点睛】关键点睛:利用一元二次方程根与系数的关系是解题的关键.21、(1)函数f(x)在区间(0,+)上单调递减(2)①;②证明见解析【解析】(1)求导,求解可得导函数恒小于等于0,即得证;(2)①分析函数的单调性,由有两个实数根可求解;②由(1)得2lnxx−,再利用其放缩可得,由此有,问题得证.【小问1详解】当a=1时,函数因为所以函数f(x)在区间(0,+)上单调递减;【小问2详解】(i)由已知可得方程有两个实数根记,则.当时,,函数k(x)是增函数;当时,,函数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 辽宁墙板施工方案(3篇)
- 竹架搭建施工方案(3篇)
- 2026年上半年黑龙江省事业单位公开招聘(4254人)备考考试题库及答案解析
- 2026上半年福建安溪城建集团有限公司(首批)引进专项人才5人备考考试题库及答案解析
- 动作模仿秀第二弹
- 2025河北邢台市中心血站第二批招聘编外人员1人考试备考题库及答案解析
- 2026山东事业单位统考潍坊滨海经济技术开发区招聘7人笔试备考试题及答案解析
- 2026福建福州市马尾区行政服务中心管委会第一批招聘编外人员1人备考考试试题及答案解析
- 2026山东事业单位统考泰安新泰市招聘初级综合类岗位76人笔试参考题库及答案解析
- 2026年桓台县面向退役大学生士兵专项岗位公开招聘工作人员(8人)备考考试题库及答案解析
- 保安证考试应试宝典及试题答案
- 630KVA箱变安装工程施工设计方案
- 四川省绵阳市涪城区2024-2025学年九年级上学期1月期末历史试卷(含答案)
- 儿童故事绘本愚公移山课件模板
- IIT临床研究培训
- 空调机组售后服务承诺及人员培训计划
- 第四届全国仪器仪表行业职业技能竞赛-无人机装调检修工(仪器仪表检测)理论考试题库(含答案)
- GB/T 5169.13-2024电工电子产品着火危险试验第13部分:灼热丝/热丝基本试验方法材料的灼热丝起燃温度(GWIT)试验方法
- 中国驴肉行业竞争格局及发展前景预测研究报告(2024-2030)
- 财务负责人信息表
- crtd植入术护理查房
评论
0/150
提交评论