2026届上海建平中学高一数学第一学期期末检测模拟试题含解析_第1页
2026届上海建平中学高一数学第一学期期末检测模拟试题含解析_第2页
2026届上海建平中学高一数学第一学期期末检测模拟试题含解析_第3页
2026届上海建平中学高一数学第一学期期末检测模拟试题含解析_第4页
2026届上海建平中学高一数学第一学期期末检测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届上海建平中学高一数学第一学期期末检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.对于用斜二测画法画水平放置的图形的直观图来说,下列描述不正确的是A.三角形的直观图仍然是一个三角形 B.的角的直观图会变为的角C.与轴平行的线段长度变为原来的一半 D.原来平行的线段仍然平行2.已知,则的最小值是()A.2 B.C.4 D.3.如图,正方体的棱长为1,动点在线上,,分别是,的中点,则下列结论中错误的是()A. B.平面C.三棱锥的体积为定值 D.存在点,使得平面平面4.若函数的图象上存在一点满足,且,则称函数为“可相反函数”,在①;②;③;④中,为“可相反函数”的全部序号是()A.①② B.②③C.①③④ D.②③④5.如图,有一个水平放置的透明无盖的正方体容器,容器高4cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为3cm,如果不计容器的厚度,则球的体积为A.B.C.D.6.定义在上的函数,,若在区间上为增函数,则一定为正数的是A. B.C. D.7.已知是第三象限角,则是A.第一象限角 B.第二象限角C.第一或第四象限角 D.第二或第四象限角8.在平面直角坐标系中,直线的斜率是()A. B.C. D.9.下列函数中最小值为6的是()A. B.C D.10.已知,,,则大小关系为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知,若,则________12.已知直线过点.若直线在两坐标轴上的截距相等,求直线的方程______.13.若函数在区间上单调递增,则实数的取值范围是__________.14.若“”是“”的必要条件,则的取值范围是________15.已知函数,且函数恰有两个不同零点,则实数的取值范围是___________.16.下列命题中,正确命题的序号为______①单位向量都相等;②若向量,满足,则;③向量就是有向线段;④模为的向量叫零向量;⑤向量,共线与向量意义是相同的三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知.(1)若为锐角,求的值.(2)求的值.18.已知集合A={x|﹣2≤x≤5},B={x|m﹣6≤x≤2m﹣1}(1)当m=﹣1时,求A∩B;(2)若集合B是集合A的子集,求实数m的取值范围19.已知定义在上的函数是奇函数(1)求函数的解析式;(2)判断的单调性,并用单调性定义证明20.已知函数(R).(1)当取什么值时,函数取得最大值,并求其最大值;(2)若为锐角,且,求的值.21.已知点是圆内一点,直线.(1)若圆的弦恰好被点平分,求弦所在直线的方程;(2)若过点作圆的两条互相垂直的弦,求四边形的面积的最大值;(3)若,是上的动点,过作圆的两条切线,切点分别为.证明:直线过定点.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】根据斜二测画法,三角形的直观图仍然是一个三角形,故正确;的角的直观图不一定的角,例如也可以为,所以不正确;由斜二测画法可知,与轴平行的线段长度变为原来的一半,故正确;根据斜二测画法的作法可得原来平行的线段仍然平行,故正确,故选B.2、C【解析】根据对数运算和指数运算可得,,再由以及基本不等式可得.【详解】因为,所以,所以,所以,所以,当且仅当即时,等号成立.故选:C.【点睛】本题考查了指数和对数运算,基本不等式求最值,属于中档题.3、D【解析】对A,根据中位线的性质判定即可.对B,利用平面几何方法证明,再证明平面即可.对C,根据三棱锥以为底,且同底高不变,故体积不变判定即可.对D,根据与平面有交点判定即可.【详解】在A中,因为分别是的中点,所以,故A正确;在B中,因为,,故,故.故,又有,所以平面,故B正确;在C中,三棱锥以面为底,则高是定值,所以三棱锥的体积为定值,故C正确.在D中,与平面有交点,所以不存在点,使得平面平面,故D错误.故选:D.【点睛】方法点睛:本题考查空间点线面位置关系,考查棱锥的体积,考查线面垂直的判定定理的应用,判断线面垂直的方法主要有:

线面垂直的判定定理,直线与平面内的两条相交直线垂直;

面面垂直的性质定理,若两平面互相垂直,则在一个平面内垂直于交线的垂直于另一个平面;

线面垂直的性质定理,两条平行线中有一条与平面垂直,则另一条也与平面垂直;

面面平行的性质定理,直线垂直于两平行平面之一,必然垂直于另一个平面4、D【解析】根据已知条件把问题转化为函数与直线有不在坐标原点的交点,结合图象即可得到结论.【详解】解:由定义可得函数为“可相反函数”,即函数与直线有不在坐标原点的交点①的图象与直线有交点,但是交点在坐标原点,所以不是“可相反函数”;②的图象与直线有交点在第四象限,且交点不在坐标原点,所以是“可相反函数”;③与直线有交点在第二象限,且交点不在坐标原点,所以是“可相反函数”;④的图象与直线有交点在第四象限,且交点不在坐标原点,所以是“可相反函数”.结合图象可得:只有②③④符合要求;故选:D5、A【解析】设球的半径为R,根据已知条件得出正方体上底面截球所得截面圆的半径为2cm,球心到截面圆圆心的距离为,再利用球的性质,求得球的半径,最后利用球体体积公式,即可得出答案【详解】设球的半径为R,设正方体上底面截球所得截面圆恰好为上底面正方形的内切圆,该圆的半径为,且该截面圆圆心到水面的距离为1cm,即球心到截面圆圆心的距离为,由勾股定理可得,解得,因此,球的体积为故选A【点睛】本题主要考查了球体的体积的计算问题,解决本题的关键在于利用几何体的结构特征和球的性质,求出球体的半径,着重考查了空间想象能力,以及推理与计算能力,属于基础题6、A【解析】在区间上为增函数,即故选点睛:本题运用函数的单调性即计算出结果的符号问题,看似本题有点复杂,在解析式的给出时含有复合部分,只要运用函数的解析式求值,然后利用函数的单调性,做出减法运算即可判定出结果7、D【解析】因为是第三象限角,所以,所以,当为偶数时,是第二象限角,当为奇数时,是第四象限角.故选:D.8、A【解析】将直线转化成斜截式方程,即得得出斜率.【详解】解:由题得,原式可化为,斜率.故选:A.9、B【解析】利用基本不等式逐项分析即得.【详解】对于A,当时,,故A错误;对于B,因为,所以,当且仅当,即时取等号,故B正确;对于C,因为,所以,当且仅当,即,等号不能成立,故C错误;对于D,当时,,故D错误.故选:B.10、B【解析】分别判断与0,1等的大小关系判断即可.【详解】因为.故.又,故.又,故.所以.故选:B【点睛】本题主要考查了根据指对幂函数的单调性判断函数值大小的问题,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、1【解析】由已知条件可得,构造函数,求导后可判断函数在上单调递增,再由,得,从而可求得答案【详解】由题意得,,令,则,所以在上单调递增,因为,所以,所以,故答案为:112、或【解析】根据已知条件,分直线过原点,直线不过原点两种情况讨论,即可求解【详解】解:当直线过原点时,斜率为,由点斜式求得直线的方程是,即,当直线不过原点时,设直线的方程为,把点代入方程可得,故直线的方程是,综上所述,所求直线的方程为或故答案为:或.13、【解析】按a值对函数进行分类讨论,再结合函数的性质求解作答.【详解】当时,函数在R上单调递增,即在上递增,则,当时,函数是二次函数,又在上单调递增,由二次函数性质知,,则有,解得,所以实数的取值范围是.故答案为:14、【解析】根据题意解得:,得出,由此可得出实数的取值范围.【详解】根据题意解得:,由于“”是“”必要条件,则,.因此,实数的取值范围是:.故答案为:.15、【解析】作出函数的图象,把函数的零点转化为直线与函数图象交点问题解决.【详解】由得,即函数零点是直线与函数图象交点横坐标,当时,是增函数,函数值从1递增到2(1不能取),当时,是增函数,函数值为一切实数,在坐标平面内作出函数的图象,如图,观察图象知,当时,直线与函数图象有2个交点,即函数有2个零点,所以实数的取值范围是:.故答案为:16、④⑤【解析】由向量中单位向量,向量相等、零向量和共线向量的定义进行判断,即可得出答案.【详解】对于①.单位向量方向不同时,不相等,故不正确.对于②.向量,满足时,若方向不同时,不相等,故不正确.对于③.有向线段是有方向的线段,向量是既有大小、又有方向的量.向量可以用有向线段来表示,二者不等同,故不正确,对于④.根据零向量的定义,正确.对于⑤.根据共线向量是方向相同或相反的向量,也叫平行向量,故正确.故答案为:④⑤三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)根据题意和求得,结合两角和的余弦公式计算即可;(2)根据题意和可得,利用二倍角的正切公式求出,结合两角和的正切公式计算即可.【小问1详解】由,为锐角,,得,∴;【小问2详解】由得,则,∴18、(1)A∩B=∅;(2)(﹣∞,﹣5)【解析】(1)由m=﹣1求得B,再利用交集运算求解.(2)根据B⊆A,分B=∅和B≠∅两种求解讨论求解.【详解】(1)m=﹣1时,B={x|﹣7≤x≤﹣3};∴A∩B=∅;(2)∵B⊆A;∴①B=∅时,m﹣6>2m﹣1;∴m<﹣5;②B≠∅时,,此不等式组无解;∴m的取值范围是(﹣∞,﹣5)【点睛】本题主要考查集合的基本运算以及集合基本关系的应用,还考查了分类讨论的思想,属于基础题.19、(1);(2)在上是减函数,证明见解析【解析】(1)根据奇函数的定义即可求出结果;(2)设,且,然后与,作差,通过因式分解判断正负,然后根据单调性的概念即可得出结论.【详解】(1)∵是定义在上的奇函数,∴,∴,此时,,是奇函数,满足题意∴(2),在上是减函数设,且,则,∵,∴,,,∴,即,∴在上是减函数20、(1)Z)时,函数f(x)取得最大值,其值为.(2).【解析】(1)由倍角公式,辅助角公式,化简f(x),利用三角函数的图像和性质即可得解.(2)把代入f(x)的解析式得f()的解析式,可求得,进而求得.【详解】(1)f(x)=2sinxcosx+cos2x=sin2x+cos2x,,∴当,即Z)时,函数f(x)取得最大值,其值为(2)∵,∴∴∵θ为锐角,∴.∴【点睛】本题主要考查三角函数性质,同角三角函数的基本关系等知识,考查运算求解能力,属于中档题21、(1)(2)11(3)见解析【解析】(1)由

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论