版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届河南省开封五县联考数学高二上期末预测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如果椭圆的弦被点平分,那么这条弦所在的直线的方程是()A. B.C. D.2.已知函数的图象是下列四个图象之一,且其导函数的图象如图所示,则该函数的图象是()A. B.C. D.3.设数列、都是等差数列,若,则等于()A. B.C. D.4.若是函数的一个极值点,则的极大值为()A. B.C. D.5.已知直线与直线平行,则实数a的值为()A.1 B.C.1或 D.6.复数,则对应的点所在的象限是()A.第一象限 B.第二象限C.第三象限 D.第四象限7.设A=37+·35+·33+·3,B=·36+·34+·32+1,则A-B的值为()A.128 B.129C.47 D.08.已知数列中,,则()A. B.C. D.9.已知三个顶点都在抛物线上,且为抛物线的焦点,若,则()A.6 B.8C.10 D.1210.已知事件A,B相互独立,,则()A.0.24 B.0.8C.0.3 D.0.1611.已知m,n表示两条不同的直线,表示平面,则下列说法正确的是()A.若,,则 B.若,,则C.若,,则 D.若,,则12.已知双曲线渐近线方程为,则该双曲线的离心率等于()A. B.C.2 D.4二、填空题:本题共4小题,每小题5分,共20分。13.已知向量,,若,则______14.已知向量,,若向量与向量平行,则实数______15.已知定义在R上的函数的导函数,且,则实数的取值范围为__________.16.若在数列的每相邻两项之间插入此两项的和,形成新的数列,再把所得数列按照同样的方法不断构造出新的数列,现将数列进行构造,第次得到数列;第次得到数列;依次构造,第次得到数列;记,则(1)___________,(2)___________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知抛物线上一点到抛物线焦点的距离为,点关于坐标原点对称,过点作轴的垂线,为垂足,直线与抛物线交于两点.(1)求抛物线的方程;(2)设直线与轴交点分别为,求的值;(3)若,求.18.(12分)已知,以点为圆心圆被轴截得的弦长为.(1)求圆的方程;(2)若过点的直线与圆相切,求直线的方程.19.(12分)已知点是圆:上任意一点,是圆内一点,线段的垂直平分线与半径相交于点(1)当点在圆上运动时,求点的轨迹的方程;(2)设不经过坐标原点,且斜率为的直线与曲线相交于,两点,记,的斜率分别是,.当,都存在且不为时,试探究是否为定值?若是,求出此定值;若不是,请说明理由20.(12分)在平面直角坐标系中,双曲线的左、右两个焦点为、,动点P满足(1)求动点P的轨迹E的方程;(2)设过且不垂直于坐标轴的动直线l交轨迹E于A、B两点,问:线段上是否存在一点D,使得以DA、DB为邻边的平行四边形为菱形?若存在,请给出证明:若不存在,请说明理由21.(12分)已知数列中,,且(1)求证:数列是等差数列,并求出;(2)数列前项和为,求22.(10分)已知圆M的圆心在直线上,且圆心在第一象限,半径为3,圆M被直线截得的弦长为4.(1)求圆M的方程;(2)设P是直线上的动点,证明:以MP为直径的圆必过定点,并求所有定点的坐标.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】设该弦所在直线与椭圆的两个交点分别为,,则,利用点差法可得答案.【详解】设该弦所在直线与椭圆的两个交点分别为,,则因为,两式相减可得,,即由中点公式可得,所以,即,所以AB所在直线方程为,即故选:B2、A【解析】利用导数与函数的单调性之间的关系及导数的几何意义即得.【详解】由函数f(x)的导函数y=f′(x)的图像自左至右是先减后增,可知函数y=f(x)图像的切线的斜率自左至右先减小后增大,且,在处的切线的斜率为0,故BCD错误,A正确.故选:A.3、A【解析】设等差数列的公差为,根据数列是等差数列可求得,由此可得出,进而可求得所求代数式的值.【详解】设等差数列的公差为,即,由于数列也为等差数列,则,可得,即,可得,即,解得,所以,数列为常数列,对任意的,,因此,.故选:A.【点睛】关键点点睛:本题考查等差数列基本量的求解,通过等差数列定义列等式求解公差是解题的关键,另外,在求解有关等差数列基本问题时,可充分利用等差数列的定义以及等差中项法来求解.4、D【解析】先对函数求导,由已知,先求出,再令,并判断函数在其左右两边的单调性,从而确定极大值点,然后带入原函数即可完成求解.【详解】因为,,所以,所以,,令,解得或,所以当,,单调递增;时,,单调递减;当,,单调递增,所以的极大值为故选:D5、A【解析】根据两直线平行的条件列方程,化简求得,检验后确定正确答案.【详解】由于直线与直线平行,所以,或,当时,两直线方程都为,即两直线重合,所以不符合题意.经检验可知符合题意.故选:A6、C【解析】化简复数,根据复数的几何意义,即可求解.【详解】由题意,复数,所以复数对应的点为位于第三象限.故选:C.7、A【解析】先化简A-B,发现其结果为二项式展开式,然后计算即可【详解】A-B=37-·36+·35-·34+·33-·32+·3-1=故选A.【点睛】本题主要考查了二项式定理的运用,关键是通过化简能够发现其结果在形式上满足二项式展开式,然后计算出结果,属于基础题8、D【解析】由数列的递推公式依次去求,直到求出即可.【详解】由,可得,,,故选:D.9、D【解析】设,,,由向量关系化为坐标关系,再结合抛物线的焦半径公式即可计算【详解】由得焦点,准线方程为,设,,由得则,化简得所以故选:D10、B【解析】利用事件独立性的概率乘法公式及条件概率公式进行求解.【详解】因为事件A,B相互独立,所以,所以故选:B11、D【解析】根据空间直线与平面间的位置关系判断【详解】若,,也可以有,A错;若,,也可以有,B错;若,,则或,C错;若,,则,这是线面垂直的判定定理之一,D正确故选:D12、A【解析】由双曲线的渐近线方程,可得,再由的关系和离心率公式,计算即可得到所求值【详解】解:双曲线的渐近线方程为,由题意可得即,可得由可得,故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据向量平行求得,由此求得.【详解】由于,所以.故答案为:14、2【解析】先求出的坐标,进而根据空间向量平行的坐标运算求得答案.【详解】由题意,,因为,所以存在实数使得.故答案为:2.15、【解析】由题意可得在R上单调递增,再由,利用函数的单调性转化为关于的不等式求解【详解】定义在R上的函数的导函数,在R上单调递增,由,得,即实数的取值范围为故答案为:16、①.②.【解析】根据题意得到,再利用叠加法求解即可.【详解】由题知:,,,所以,,,……,,所以,,……,,即,所以.故答案为:;三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2);(3).【解析】(1)运用抛物线的定义进行求解即可;(2)设出直线的方程,与抛物线的方程联立,可求得点和的纵坐标,结合直线点斜式方程、两点间距离公式进行求解即可;(3)利用弦长公式求得,由两点间距离公式求得和,再解方程即可.【小问1详解】抛物线的准线方程为:,因为点到抛物线焦点的距离为,所以有;小问2详解】由题意知,,,设,则,,,,所以直线的方程为,联立,消去得,,解得,设,,,,不妨取,,直线的斜率为,其方程为,令,则,同理可得,所以,而,所以;【小问3详解】,其中,,,因为,所以,化简得,解得(舍负),即,所以【点睛】关键点睛:运用抛物线的定义、弦长公式进行求解是解题的关键.18、(1)(2)或【解析】(1)根据垂径定理,可直接计算出圆的半径;(2)根据直线的斜率是否存在分类讨论,斜率不存在时,可得到直线方程为的直线满足题意,斜率存在时,利用直线与圆相切,即到直线的距离等于半径,然后解出关于斜率的方程即可.【小问1详解】不妨设圆的半径为,根据垂径定理,可得:解得:则圆的方程为:【小问2详解】当直线的斜率不存在时,则有:故此时直线与圆相切,满足题意当直线的斜率存在时,不妨设直线的斜率为,点的直线的距离为直线的方程为:则有:解得:,此时直线的方程为:综上可得,直线的方程为:或19、(1);(2)是定值,.【解析】(1)根据给定条件探求得,再借助椭圆定义直接求得轨迹的方程.(2)设出直线的方程,再与轨迹的方程联立,借助韦达定理计算作答.【小问1详解】圆:的圆心,半径,因线段的垂直平分线与半径相交于点,则,而,于是得,因此,点的轨迹是以C,A为左右焦点,长轴长为4的椭圆,短半轴长有,所以轨迹的方程为.【小问2详解】依题意,设直线的方程为:,,由消去y并整理得:,,则且,设,则有,,因直线,的斜率,都存在且不为,因此,且,,,所以直线,的斜率,都存在且不为时,是定值,这个定值是.【点睛】方法点睛:求定值问题常见的方法有两种:(1)从特殊入手,求出定值,再证明这个值与变量无关(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值20、(1);(2)存在,理由见解析.【解析】(1)根据题意用定义法求解轨迹方程;(2)在第一问的基础上,设出直线l的方程,联立椭圆方程,用韦达定理表达出两根之和,两根之积,求出直线l的垂直平分线,从而得到D点坐标,证明出结论.【小问1详解】由题意得:,所以,,而,故动点P的轨迹E的方程为以点、为焦点的椭圆方程,由得:,,所以动点P的轨迹E的方程为;【小问2详解】存,理由如下:显然,直线l的斜率存在,设为,联立椭圆方程得:,设,,则,,要想以DA、DB为邻边的平行四边形为菱形,则点D为AB垂直平分线上一点,其中,,则,故AB的中点坐标为,则AB的垂直平分线为:,令得:,且无论为何值,,点D在线段上,满足题意.21、(1)证明见解析,(2)【解析】(1)利用等差数列的定义可证是等差数列,利用等差数列的通项公式可求.(2)利用错位相减法可求.【小问1详解】因为,是以为首项,为公差的等差数列,,.【小问2详解】,,,.22、(1);(2)证明见解析,定点和.【解析】(1)根据给定条件设出圆心坐标,再结合点到直线距离公式计算作答.(2)设点,求出圆的方程,结合方程求出其定点.【小问1详解】因圆M
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 农业系统职称考试考试试题题库及答案
- 综合评标专家(工程施工类)历年参考题库含答案解析(5套)
- 化妆培训教学课件内容
- 特教体育考试题库及答案
- 2025年大学(环境工程)大气污染实训试题及答案
- 背景调查管理制度
- 信用管理师理论知识考核试题题库及答案
- 市舒兰市安全员B证(项目负责人)考试题库及答案【各地真题】
- 维修电工专业技能面试题目及答案
- 国网山东电力缴费优惠活动方案
- 对招标文件及合同条款的认同声明
- 物业代收水电费委托书
- 2024至2030年高强度快硬硫铝酸盐水泥项目投资价值分析报告
- 制造业企业质量管理能力评估规范
- 13J933-2体育场地与设施(二)
- DL-T-710-2018水轮机运行规程
- 电机常见故障分析及处理措施
- HGT 20714-2023 管道及仪表流程图(P ID)安全审查规范 (正式版)
- 《叉车安全作业培训》课件
- 技术入股合作协议合同
- 建筑砌筑工(中级)理论考试题库及答案
评论
0/150
提交评论