【《碳材料的应用研究文献综述》3300字】_第1页
【《碳材料的应用研究文献综述》3300字】_第2页
【《碳材料的应用研究文献综述》3300字】_第3页
【《碳材料的应用研究文献综述》3300字】_第4页
【《碳材料的应用研究文献综述》3300字】_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

碳材料的应用研究文献综述不同的碳具有不同的物理化学性质,这取决于碳碳键的结合、表面官能团的缺陷程度以及它们的微纳米结构。自富勒烯的发现、20世纪90年代初碳纳米管的发现以及2004年石墨烯的(重新)发现以来,这些纳米碳材料越来越受到关注ADDINEN.CITEADDINEN.CITE.DATA[\o"McCreery,2008#229"84-87]。1.1碳材料概述(1)石墨烯石墨烯(graphene)是由sp2杂化的蜂窝形结构ADDINEN.CITE<EndNote><Cite><Author>Korkmaz</Author><Year>2020</Year><RecNum>233</RecNum><DisplayText><styleface="superscript">[88]</style></DisplayText><record><rec-number>233</rec-number><foreign-keys><keyapp="EN"db-id="ax0xfvs58wftsoevfa55vx96praevp9vz2tw">233</key><keyapp="ENWeb"db-id="">0</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Korkmaz,Satiye</author><author>Kariper,İAfşin</author></authors></contributors><titles><title>Grapheneandgrapheneoxidebasedaerogels:Synthesis,characteristicsandsupercapacitorapplications</title><secondary-title>JournalofEnergyStorage</secondary-title></titles><periodical><full-title>JournalofEnergyStorage</full-title></periodical><pages>101038</pages><volume>27</volume><dates><year>2020</year></dates><isbn>2352152X</isbn><urls></urls><electronic-resource-num>10.1016/j.est.2019.101038</electronic-resource-num></record></Cite></EndNote>[\o"Korkmaz,2020#233"88],石墨烯拥有很多优异的性能,如高的理论表面积(2600m2/g)、优异的热导率(4840-5300W/m∙k)和优异的力学性能(抗拉强度高达130GPa,弹性模量为1000GPa)成为研究最广泛的二维材料,它引起了研究者们的关注,尤其是在电化学方面的应用ADDINEN.CITEADDINEN.CITE.DATA[\o"Liu,2016#234"89-91]。(2)氧化石墨烯氧化石墨烯(GO)是含氧官能团附着在石墨烯薄片上的一种sp2杂化碳原子排列成蜂窝结构的二维纳米材料。在氧化石墨烯上,羧基、羰基、环氧基、羟基等不同的含氧官能团附着在氧化石墨烯层的边缘,从而提高了层间间距和亲水性。另一方面,氧化石墨烯的含氧官能团可被水合肼、硼氢化钠等不同的化学物质还原,形成与石墨烯类似的还原石墨烯氧化物(rGO),表现出更高的表面积、更强的吸附和催化活性位点。氧化石墨烯合成中最广泛使用的方法是使用高锰酸钾等强氧化剂对石墨进行湿法化学氧化ADDINEN.CITE<EndNote><Cite><Author>Siddiqui</Author><Year>2018</Year><RecNum>238</RecNum><DisplayText><styleface="superscript">[92,93]</style></DisplayText><record><rec-number>238</rec-number><foreign-keys><keyapp="EN"db-id="ax0xfvs58wftsoevfa55vx96praevp9vz2tw">238</key><keyapp="ENWeb"db-id="">0</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Siddiqui,SharfIlahi</author><author>Chaudhry,SaifAli</author></authors></contributors><titles><title>AreviewongrapheneoxideanditscompositespreparationandtheirusefortheremovalofAs3+andAs5+fromwaterundertheeffectofvariousparameters:Applicationofisotherm,kineticandthermodynamics</title><secondary-title>ProcessSafetyandEnvironmentalProtection</secondary-title></titles><periodical><full-title>ProcessSafetyandEnvironmentalProtection</full-title></periodical><pages>138-163</pages><volume>119</volume><dates><year>2018</year></dates><isbn>09575820</isbn><urls></urls><electronic-resource-num>10.1016/j.psep.2018.07.020</electronic-resource-num></record></Cite><Cite><Author>Aher</Author><Year>2017</Year><RecNum>239</RecNum><record><rec-number>239</rec-number><foreign-keys><keyapp="EN"db-id="ax0xfvs58wftsoevfa55vx96praevp9vz2tw">239</key><keyapp="ENWeb"db-id="">0</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Aher,Ashish</author><author>Cai,Yuguang</author><author>Majumder,Mainak</author><author>Bhattacharyya,Dibakar</author></authors></contributors><titles><title>Synthesisofgrapheneoxidemembranesandtheirbehaviorinwaterandisopropanol</title><secondary-title>Carbon</secondary-title></titles><periodical><full-title>Carbon</full-title></periodical><pages>145-153</pages><volume>116</volume><dates><year>2017</year></dates><isbn>00086223</isbn><urls></urls><electronic-resource-num>10.1016/j.carbon.2017.01.086</electronic-resource-num></record></Cite></EndNote>[\o"Siddiqui,2018#238"92,\o"Aher,2017#239"93]。(3)碳纳米管碳纳米管(CNT)其结构形式可以认为是将富勒烯拉长成管状。它的直径只有几纳米,长度只有几微米,因此被称为纳米管。由于其优异的机械强度和硬度,可以合成最大长径比为132000000:1的碳纳米管ADDINEN.CITEADDINEN.CITE.DATA[\o"Wang,2009#242"94]。在碳纳米管中,sp2杂化碳原子以类似石墨的六边形排列,并以封闭的圆柱形存在,碳纳米管具有富勒烯的开端和闭端ADDINEN.CITE<EndNote><Cite><Author>Aqel</Author><Year>2012</Year><RecNum>240</RecNum><DisplayText><styleface="superscript">[95]</style></DisplayText><record><rec-number>240</rec-number><foreign-keys><keyapp="EN"db-id="ax0xfvs58wftsoevfa55vx96praevp9vz2tw">240</key><keyapp="ENWeb"db-id="">0</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Aqel,Ahmad</author><author>El-Nour,KholoudM.M.Abou</author><author>Ammar,RedaA.A.</author><author>Al-Warthan,Abdulrahman</author></authors></contributors><titles><title>Carbonnanotubes,scienceandtechnologypart(I)structure,synthesisandcharacterisation</title><secondary-title>ArabianJournalofChemistry</secondary-title></titles><periodical><full-title>ArabianJournalofChemistry</full-title></periodical><pages>1-23</pages><volume>5</volume><number>1</number><dates><year>2012</year></dates><isbn>18785352</isbn><urls></urls><electronic-resource-num>10.1016/j.arabjc.2010.08.022</electronic-resource-num></record></Cite></EndNote>[\o"Aqel,2012#240"95]。根据碳的层数,碳纳米管可分为单壁碳纳米管(SWCNT)、双壁碳纳米管(DWCNT)和多壁碳纳米管(MWCNT)。从形态上看,单壁碳纳米管由纳米直径范围较小的单层碳组成,具有较好的弯曲特性。单壁碳纳米管以金属和非金属性质存在,因此它们有望用于微型化电子设备;双壁碳纳米管由两个碳层组成,与单壁碳纳米管相比,具有更高的电阻率;多壁碳纳米管由于其合成简单而被广泛使用,多壁碳纳米管包含两个以上的碳层,其外径为3–30nm,类似于同心管ADDINEN.CITE<EndNote><Cite><Author>Bekyarova</Author><Year>2005</Year><RecNum>244</RecNum><DisplayText><styleface="superscript">[96]</style></DisplayText><record><rec-number>244</rec-number><foreign-keys><keyapp="EN"db-id="ax0xfvs58wftsoevfa55vx96praevp9vz2tw">244</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Bekyarova,Elena</author><author>Itkis,MikhailE.</author><author>Cabrera,Nelson</author><author>Zhao,Bin</author><author>Yu,Aiping</author><author>Gao,Junbo</author><author>Haddon,RobertC.</author></authors></contributors><titles><title>Electronicpropertiesofsingle-walledcarbonnanotubenetworks</title><secondary-title>JournaloftheAmericanChemicalSociety</secondary-title></titles><periodical><full-title>JAmChemSoc</full-title><abbr-1>JournaloftheAmericanChemicalSociety</abbr-1></periodical><pages>5990-5</pages><volume>127</volume><number>16</number><dates><year>2005</year><pub-dates><date>2005-Apr-27</date></pub-dates></dates><isbn>0002-7863</isbn><accession-num>MEDLINE:15839699</accession-num><urls><related-urls><url><GotoISI>://MEDLINE:15839699</url></related-urls></urls><electronic-resource-num>10.1021/ja043153l</electronic-resource-num></record></Cite></EndNote>[\o"Bekyarova,2005#244"96]。(4)膨胀石墨膨胀石墨(EG)是由石墨与各种化学物质的嵌入而得到的,从而形成石墨嵌入化合物,当石墨嵌入化合物受到快速加热处理时,由于插层剂的快速挥发,会发生较大的膨胀ADDINEN.CITE<EndNote><Cite><Author>Sengupta</Author><Year>2011</Year><RecNum>245</RecNum><DisplayText><styleface="superscript">[97]</style></DisplayText><record><rec-number>245</rec-number><foreign-keys><keyapp="EN"db-id="ax0xfvs58wftsoevfa55vx96praevp9vz2tw">245</key><keyapp="ENWeb"db-id="">0</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Sengupta,Rajatendu</author><author>Bhattacharya,Mithun</author><author>Bandyopadhyay,S.</author><author>Bhowmick,AnilK.</author></authors></contributors><titles><title>Areviewonthemechanicalandelectricalpropertiesofgraphiteandmodifiedgraphitereinforcedpolymercomposites</title><secondary-title>ProgressinPolymerScience</secondary-title></titles><periodical><full-title>ProgressinPolymerScience</full-title></periodical><pages>638-670</pages><volume>36</volume><number>5</number><dates><year>2011</year></dates><isbn>00796700</isbn><urls></urls><electronic-resource-num>10.1016/gpolymsci.2010.11.003</electronic-resource-num></record></Cite></EndNote>[\o"Sengupta,2011#245"97]。膨胀石墨的优势包括酸处理的多孔隙以及表面的一些官能团(例如-OH和-COOH)的存在,这有助于石墨与聚合物之间的相互作用ADDINEN.CITE<EndNote><Cite><Author>Yasmin</Author><Year>2004</Year><RecNum>246</RecNum><DisplayText><styleface="superscript">[98]</style></DisplayText><record><rec-number>246</rec-number><foreign-keys><keyapp="EN"db-id="ax0xfvs58wftsoevfa55vx96praevp9vz2tw">246</key><keyapp="ENWeb"db-id="">0</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Yasmin,Asma</author><author>Daniel,IsaacM.</author></authors></contributors><titles><title>Mechanicalandthermalpropertiesofgraphiteplatelet/epoxycomposites</title><secondary-title>Polymer</secondary-title></titles><periodical><full-title>Polymer</full-title></periodical><pages>8211-8219</pages><volume>45</volume><number>24</number><dates><year>2004</year></dates><isbn>00323861</isbn><urls></urls><electronic-resource-num>10.1016/j.polymer.2004.09.054</electronic-resource-num></record></Cite></EndNote>[\o"Yasmin,2004#246"98]。1.2碳材料的应用(1)超级电容器超级电容器装置包含两个具有高表面积或氧化还原活性材料的电极,两个电极被电解质层隔开。传统的电容器通过两个电极间的电解质极化来存储电荷,但在超级电容器中,电荷存储在电极本身,超级电容器提供的电容比传统电容器更高。依据电荷存储机制,超级电容器一般分为双电层电容(EDLC)和赝电容(PC)ADDINEN.CITE<EndNote><Cite><Author>Dubal</Author><Year>2015</Year><RecNum>259</RecNum><DisplayText><styleface="superscript">[99]</style></DisplayText><record><rec-number>259</rec-number><foreign-keys><keyapp="EN"db-id="ax0xfvs58wftsoevfa55vx96praevp9vz2tw">259</key><keyapp="ENWeb"db-id="">0</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Dubal,D.P.</author><author>Ayyad,O.</author><author>Ruiz,V.</author><author>Gómez-Romero,P.</author></authors></contributors><titles><title>Hybridenergystorage:themergingofbatteryandsupercapacitorchemistries</title><secondary-title>ChemicalSocietyReviews</secondary-title></titles><periodical><full-title>ChemSocRev</full-title><abbr-1>ChemicalSocietyreviews</abbr-1></periodical><pages>1777-1790</pages><volume>44</volume><number>7</number><dates><year>2015</year></dates><isbn>0306-0012 1460-4744</isbn><urls></urls><electronic-resource-num>10.1039/c4cs00266k</electronic-resource-num></record></Cite></EndNote>[\o"Dubal,2015#259"99]。Sahu等制备了还原氧化石墨烯纳米带,将其应用于超级电容器。还原氧化石墨烯纳米带的合成过程中产生的孔不仅增强了电解的可行性,而且还通过边缘平面上的突起和单个石墨烯中的褶皱将所有石墨烯层堆叠。还原氧化石墨烯在超级电容器电池中表现出超高的比电容、容量保持性能和功率密度ADDINEN.CITE<EndNote><Cite><Author>Lawler</Author><Year>2015</Year><RecNum>147</RecNum><DisplayText><styleface="superscript">[13]</style></DisplayText><record><rec-number>147</rec-number><foreign-keys><keyapp="EN"db-id="ax0xfvs58wftsoevfa55vx96praevp9vz2tw">147</key><keyapp="ENWeb"db-id="">0</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Lawler,CindyP.</author><author>Heindel,JerroldJ.</author><author>Gray,Kimberly</author><author>Blawas,AshleyM.</author><author>Schug,ThaddeusT.</author></authors></contributors><titles><title>ElucidatingtheLinksBetweenEndocrineDisruptorsandNeurodevelopment</title><secondary-title>Endocrinology</secondary-title></titles><periodical><full-title>Endocrinology</full-title></periodical><pages>1941-1951</pages><volume>156</volume><number>6</number><dates><year>2015</year></dates><isbn>0013-7227 1945-7170</isbn><urls></urls><electronic-resource-num>10.1210/en.2014-1734</electronic-resource-num></record></Cite></EndNote>[\o"Lawler,2015#147"13]。Kumar等制备了一种高性能的导电聚苯胺/还原氧化石墨烯复合材料(如图1-9所示是制备原理图和实际样品图片),将它用于超级电容器。导电聚苯胺的加入大大提高了材料的比电容,比电容值高达250F/gADDINEN.CITEADDINEN.CITE.DATA[\o"Kumar,2012#249"100]。图1-9PANi-g-rGO的制备原理图,中间是实际样品的图片[100]Figure1-9.SchematicgoverningthepreparationofPANi-g-rGOwithadigitalpictureofthesampleinthemiddle.(2)锂离子电池由于对手机、平板电脑、笔记本电脑、相机等便携式产品的巨大需求,锂离子电池作为高能量密度存储设备已经主导了储能市场,作为减少环境污染的一种手段,它们在新能源汽车上也显示出巨大的性能潜力。锂电由三部分组成(阳极、阴极和电解液),通过法拉第反应将化学能转化为电能;在充电过程中,锂离子从阴极材料中被提取出来,通过电解液迁移到阳极,电子在外部电路中从阴极流向阳极。Zhu等采用微波处理法制备了Fe2O3纳米片修饰rGO复合材料,将其应用于锂离子电池的阳极材料,该材料的充放电能力分别为1227mAh/g和1693mAh/g[\o"Chen,2015#260"101]。其他石墨烯基复合材料也表现出良好的阳极材料的潜力,如CuS/rGOADDINEN.CITE<EndNote><Cite><Author>Feng</Author><Year>2015</Year><RecNum>250</RecNum><DisplayText><styleface="superscript">[102]</style></DisplayText><record><rec-number>250</rec-number><foreign-keys><keyapp="EN"db-id="ax0xfvs58wftsoevfa55vx96praevp9vz2tw">250</key><keyapp="ENWeb"db-id="">0</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Feng,Caihong</author><author>Zhang,Le</author><author>Yang,Menghuan</author><author>Song,Xiangyun</author><author>Zhao,Hui</author><author>Jia,Zhe</author><author>Sun,Kening</author><author>Liu,Gao</author></authors></contributors><titles><title>One-PotSynthesisofCopperSulfideNanowires/ReducedGrapheneOxideNanocompositeswithExcellentLithium-StoragePropertiesasAnodeMaterialsforLithium-IonBatteries</title><secondary-title>ACSAppliedMaterials&Interfaces</secondary-title></titles><periodical><full-title>ACSApplMaterInterfaces</full-title><abbr-1>ACSappliedmaterials&interfaces</abbr-1></periodical><pages>15726-15734</pages><volume>7</volume><number>29</number><dates><year>2015</year></dates><isbn>1944-8244 1944-8252</isbn><urls></urls><electronic-resource-num>10.1021/acsami.5b01285</electronic-resource-num></record></Cite></EndNote>[\o"Feng,2015#250"102]、MoS2/rGOADDINEN.CITE<EndNote><Cite><Author>Xiong</Author><Year>2015</Year><RecNum>251</RecNum><DisplayText><styleface="superscript">[103]</style></DisplayText><record><rec-number>251</rec-number><foreign-keys><keyapp="EN"db-id="ax0xfvs58wftsoevfa55vx96praevp9vz2tw">251</key><keyapp="ENWeb"db-id="">0</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Xiong,Fangyu</author><author>Cai,Zhengyang</author><author>Qu,Longbing</author><author>Zhang,Pengfei</author><author>Yuan,Zefang</author><author>Asare,OwusuKwadwo</author><author>Xu,Wangwang</author><author>Lin,Chao</author><author>Mai,Liqiang</author></authors></contributors><titles><title>Three-DimensionalCrumpledReducedGrapheneOxide/MoS2Nanoflowers:AStableAnodeforLithium-IonBatteries</title><secondary-title>ACSAppliedMaterials&Interfaces</secondary-title></titles><periodical><full-title>ACSApplMaterInterfaces</full-title><abbr-1>ACSappliedmaterials&interfaces</abbr-1></periodical><pages>12625-12630</pages><volume>7</volume><number>23</number><dates><year>2015</year></dates><isbn>1944-8244 1944-8252</isbn><urls></urls><electronic-resource-num>10.1021/acsami.5b02978</electronic-resource-num></record></Cite></EndNote>[\o"Xiong,2015#251"103]、Co2V2O7/rGOADDINEN.CITE<EndNote><Cite><Author>Luo</Author><Year>2016</Year><RecNum>252</RecNum><DisplayText><styleface="superscript">[104]</style></DisplayText><record><rec-number>252</rec-number><foreign-keys><keyapp="EN"db-id="ax0xfvs58wftsoevfa55vx96praevp9vz2tw">252</key><keyapp="ENWeb"db-id="">0</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Luo,Yanzhu</author><author>Xu,Xu</author><author>Zhang,Yuxiang</author><author>Chen,Chih-Yen</author><author>Zhou,Liang</author><author>Yan,Mengyu</author><author>Wei,Qiulong</author><author>Tian,Xiaocong</author><author>Mai,Liqiang</author></authors></contributors><titles><title>GrapheneOxideTemplatedGrowthandSuperiorLithiumStoragePerformanceofNovelHierarchicalCo2V2O7Nanosheets</title><secondary-title>ACSAppliedMaterials&Interfaces</secondary-title></titles><periodical><full-title>ACSApplMaterInterfaces</full-title><abbr-1>ACSappliedmaterials&interfaces</abbr-1></periodical><pages>2812-2818</pages><volume>8</volume><number>4</number><dates><year>2016</year></dates><isbn>1944-8244 1944-8252</isbn><urls></urls><electronic-resource-num>10.1021/acsami.5b11510</electronic-resource-num></record></Cite></EndNote>[\o"Luo,2016#252"104]、Si/Ti2O3/rGOADDINEN.CITE<EndNote><Cite><Author>Park</Author><Year>2015</Year><RecNum>253</RecNum><DisplayText><styleface="superscript">[105]</style></DisplayText><record><rec-number>253</rec-number><foreign-keys><keyapp="EN"db-id="ax0xfvs58wftsoevfa55vx96praevp9vz2tw">253</key><keyapp="ENWeb"db-id="">0</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Park,A.Reum</author><author>Son,Dae-Yong</author><author>Kim,JungSub</author><author>Lee,JunYoung</author><author>Park,Nam-Gyu</author><author>Park,Juhyun</author><author>Lee,JoongKee</author><author>Yoo,PilJ.</author></authors></contributors><titles><title>Si/Ti2O3/ReducedGrapheneOxideNanocompositeAnodesforLithium-IonBatterieswithHighlyEnhancedCyclicStability</title><secondary-title>ACSAppliedMaterials&Interfaces</secondary-title></titles><periodical><full-title>ACSApplMaterInterfaces</full-title><abbr-1>ACSappliedmaterials&interfaces</abbr-1></periodical><pages>18483-18490</pages><volume>7</volume><number>33</number><dates><year>2015</year></dates><isbn>1944-8244 1944-8252</isbn><urls></urls><electronic-resource-num>10.1021/acsami.5b04652</electronic-resource-num></record></Cite></EndNote>[\o"Park,2015#253"105]等。(3)燃料电池燃料电池的原理是通过催化剂将燃料氧化,将化学能转化为电能,它具有绿色、高效的特点,所以其具有广阔的发展前景ADDINEN.CITE<EndNote><Cite><Author>Mahmood</Author><Year>2014</Year><RecNum>254</RecNum><DisplayText><styleface="superscript">[106,107]</style></DisplayText><record><rec-number>254</rec-number><foreign-keys><keyapp="EN"db-id="ax0xfvs58wftsoevfa55vx96praevp9vz2tw">254</key><keyapp="ENWeb"db-id="">0</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Mahmood,Nasir</author><author>Zhang,Chenzhen</author><author>Yin,Han</author><author>Hou,Yanglong</author></authors></contributors><titles><title>Graphene-basednanocompositesforenergystorageandconversioninlithiumbatteries,supercapacitorsandfuelcells</title><secondary-title>J.Mater.Chem.A</secondary-title></titles><periodical><full-title>J.Mater.Chem.A</full-title></periodical><pages>15-32</pages><volume>2</volume><number>1</number><dates><year>2014</year></dates><isbn>2050-7488 2050-7496</isbn><urls></urls><electronic-resource-num>10.1039/c3ta13033a</electronic-resource-num></record></Cite><Cite><Author>Saadi</Author><Year>2013</Year><RecNum>255</RecNum><record><rec-number>255</rec-number><foreign-keys><keyapp="EN"db-id="ax0xfvs58wftsoevfa55vx96praevp9vz2tw">255</key><keyapp="ENWeb"db-id="">0</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Saadi,A.</author><author>Becherif,M.</author><author>Aboubou,A.</author><author>Ayad,M.Y.</author></authors></contributors><titles><title>Comparisonofprotonexchangemembranefuelcellstaticmodels</title><secondary-title>RenewableEnergy</secondary-title></titles><periodical><full-title>RenewableEnergy</full-title></periodical><pages>64-71</pages><volume>56</volume><dates><year>2013</year></dates><isbn>09601481</isbn><urls></urls><electronic-resource-num>10.1016/j.renene.2012.10.012</electronic-resource-num></record></Cite></EndNote>[\o"Mahmood,2014#254"106,\o"Saadi,2013#255"107]。它们与电池的不同之处在于需要持续的燃料和氧气来维持化学反应。燃料电池有几种类型,但都由阳极、阴极和电解质组成,电解质允许带正电荷的氢离子(质子)在两个电极之间移动,燃料电池以其高能量密度和功率密度、高能量转换效率和低工作温度等特点,具有重要的应用价值,燃料电池的性能在很大程度上取决于电极材料ADDINEN.CITEADDINEN.CITE.DATA[\o"Lanzini,2017#256"108,\o"Arico,2005#258"109]。Liu等采用“绿色”电化学合成方法,在导电氧化铟锡玻璃电极上沉积铂纳米颗粒/膨胀石墨纳米复合薄膜;合成的Pt/EG纳米复合材料对甲醇的氧化具有很高的催化活性和良好的稳定性ADDINEN.CITE<EndNote><Cite><Author>Liu</Author><Year>2010</Year><RecNum>263</RecNum><DisplayText><styleface="superscript">[110]</style></DisplayText><record><rec-number>263</rec-number><foreign-keys><keyapp="EN"db-id="ax0xfvs58wftsoevfa55vx96praevp9vz2tw">263</key><keyapp="ENWeb"db-id="">0</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Liu,Sheng</author><author>Wang,Jinqing</author><author>Zeng,Jing</author><author>Ou,Junfei</author><author>Li,Zhangpeng</author><author>Liu,Xiaohong</author><author>Yang,Shengrong</author></authors></contributors><titles><title>“Green”electrochemicalsynthesisofPt/graphenesheetnanocompositefilmanditselectrocatalyticproperty</title><secondary-title>JournalofPowerSources</secondary-title></titles><periodical><full-title>JournalofPowerSources</full-title></periodical><pages>4628-4633</pages><volume>195</volume><number>15</number><dates><year>2010</year></dates><isbn>03787753</isbn><urls></urls><electronic-resource-num>10.1016/j.jpowsour.2010.02.024</electronic-resource-num></record></Cite></EndNote>[\o"Liu,2010#263"110]。Dong等在石墨烯薄片上合成了Pt和Pt-Ru纳米颗粒,并研究了它们对甲醇和乙醇氧化的电催化活性,与广泛使用的VulcanXC-72R炭黑催化剂载体相比,石墨烯负载的Pt和Pt-Ru纳米颗粒在扩散效率,氧化电位和正向氧化峰值电流密度方面对甲醇和乙醇表现出更高的电氧化效率ADDINEN.CITE<EndNote><Cite><Author>Dong</Author><Year>2010</Year><RecNum>264</RecNum><DisplayText><styleface="superscript">[111]</style></DisplayText><record><rec-number>264</rec-number><foreign-keys><keyapp="EN"db-id="ax0xfvs58wftsoevfa55vx96praevp9vz2tw">264</key><keyapp="ENWeb"db-id="">0</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Dong,Lifeng</author><author>Gari,RaghavendarReddySanganna</author><author>Li,Zhou</author><author>Craig,MichaelM.</author><author>Hou,Shifeng</author></authors></contributors><titles><title>Graphene-supportedplatinumandplatinum–rutheniumnanoparticleswithhighelectrocatalyticactivityformethanolandethanoloxidation</title><secondary-title>Carbon</secondary-title></titles><periodical><full-title>Carbon</full-title></periodical><pages>781-787</pages><volume>48</volume><number>3</number><dates><year>2010</year></dates><isbn>00086223</isbn><urls></urls><electronic-resource-num>10.1016/j.carbon.2009.10.027</electronic-resource-num></record></Cite></EndNote>[\o"Dong,2010#264"111]。(4)水处理吸附是一种简单但有效去除被有机和无机污染物的水的过程,吸附是流体、气体或液体在吸附剂表面聚集的现象。为了有效地处理废水,人们正在寻找一种具有较高吸附能力和易于再生的新型吸附剂ADDINEN.CITE<EndNote><Cite><Author>Selvaraj</Author><Year>2020</Year><RecNum>265</RecNum><DisplayText><styleface="superscript">[112]</style></DisplayText><record><rec-number>265</rec-number><foreign-keys><keyapp="EN"db-id="ax0xfvs58wftsoevfa55vx96praevp9vz2tw">265</key><keyapp="ENWeb"db-id="">0</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Selvaraj,Munirasu</author><author>Hai,Abdul</author><author>Banat,Fawzi</author><author>Haija,MohammadAbu</author></authors></contributors><titles><title>Applicationandprospectsofcarbonnanostructuredmaterialsinwatertreatment:Areview</title><secondary-title>JournalofWaterProcessEngineering</secondary-title></titles><periodical><full-title>JournalofWaterProcessEngineering</full-title></periodical><pages>100996</pages><volume>33</volume><dates><year>2020</year></dates><isbn>22147144</isbn><urls></urls><electronic-resource-num>10.1016/j.jwpe.2019.100996</electronic-resource-num></record></Cite></EndNote>[\o"Selvaraj,2020#265"112]。Elsagh等使用一些碳材料替代吸附剂,可从水溶液中去除阳离子染料(BR46),实验表明,上述所有材料均可用于BR46的去除ADDINEN.CITE<EndNote><Cite><Author>Elsagh</Author><Year>2017</Year><RecNum>266</RecNum><DisplayText><styleface="superscript">[113]</style></DisplayText><record><rec-number>266</rec-number><foreign-keys><keyapp="EN"db-id="ax0xfvs58wftsoevfa55vx96praevp9vz2tw">266</key><keyapp="ENWeb"db-id="">0</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Elsagh,Akbar</author><author>Moradi,Omid</author><author>Fakhri,Ali</author><author>Najafi,Fahimeh</author><author>Alizadeh,Reza</author><author>Haddadi,Vahid</author></authors></contributors><titles><title>Evaluationofthepotentialcationicdyeremovalusingadsorptionbygrapheneandcarbonnanotubesasadsorbentssurfaces</title><secondary-title>ArabianJournalofChemistry</secondary-title></titles><periodical><full-title>ArabianJournalofChemistry</full-title></periodical><pages>S2862-S2869</pages><volume>10</volume><dates><year>2017</year></dates><isbn>18785352</isbn><urls></urls><electronic-resource-num>10.1016/j.arabjc.2013.11.013</electronic-resource-num></record></Cite></EndNote>[\o"Elsagh,2017#266"113]。(5)电化学传感器电化学传感器具有灵敏度高、响应时间快、成本低、仪器简单、可小型化、可集成于便携式设备等显著特性;此外,电化学传感器的另一个显著特点是它们能够检测广泛的化合物,从有机、无机、离子或中性分子到金属离子等。碳纳米材料(CNPs)已经形成了强大的电化学传感平台,该平台基于所谓的“CNPs修饰电极”,可用于测定各种分析物ADDINEN.CITEADDINEN.CITE.DATA[\o"Asadian,2019#267"114-116]。Hao等用锌粉原位还原氧化石墨烯合成ZnO/rGO复合材料,将复合材料修饰到碳糊电极上用于检测中性有机染料苏丹Ⅰ和重金属离子Pb2+,表现出优异的催化氧化性能ADDINEN.CITE<EndNote><Cite><Author>Hao</Author><Year>2018</Year><RecNum>30</RecNum><DisplayText><styleface="superscript">[117]</style></DisplayText><record><rec-number>30</rec-number><foreign-keys><keyapp="EN"db-id="ax0xfvs58wftsoevfa55vx96praevp9vz2tw">30</key><keyapp="ENWeb"db-id="">0</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Hao,Junxing</author><author>Ji,Liudi</author><author>Wu,Kangbing</author><author>Yang,Nianjun</author></authors></contributors><titles><title>ElectrochemistryofZnO@reducedgrapheneoxides</title><secondary-title>Carbon</secondary-title></titles><periodical><full-title>Carbon</full-title></periodical><pages>480-486</pages><volume>130</volume><dates><year>2018</year></dates><isbn>00086223</isbn><urls></urls><electronic-resource-num>10.1016/j.carbon.2018.01.018</electronic-resource-num></record></Cite></EndNote>[\o"Hao,2018#30"117]。Alam等成功合成了氧化石墨烯/羧基化碳纳米管/β-环糊精复合材料,图1-10是GO-MWCNT-βCD/SPE电极的制备原理图,将该材料用于环境内分泌干扰物双酚A的检测,该修饰电极结合了碳纳米管的电催化性能、β-环糊精的选择性主-客体包含能力以及氧化石墨烯的协同电化学传感效应。该传感器表现出较高的选择性,较宽的线性范围和较低的检出限;同时具有良好的抗干扰能力和实际应用潜能ADDINEN.CITE<EndNote><Cite><Author>Alam</Author><Year>2020</Year><RecNum>270</RecNum><DisplayText><styleface="superscript">[118]</style></DisplayText><record><rec-number>270</rec-number><foreign-keys><keyapp="EN"db-id="ax0xfvs58wftsoevfa55vx96praevp9vz2tw">270</key><keyapp="ENWeb"db-id="">0</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Alam,ArifU.</author><author>Deen,M.Jamal</author></authors></contributors><titles><title>BisphenolAElectrochemicalSensorUsingGrapheneOxideandβ-Cyclodextrin-FunctionalizedMulti-WalledCarbonNanotubes</title><secondary-title>AnalyticalChemistry</secondary-title></titles><periodical><full-title>AnalChem</full-title><abbr-1>Analyticalchemistry</abbr-1></periodical><pages>5532-5539</pages><volume>92</volume><number>7</number><dates><year>2020</year></dates><isbn>0003-2700 1520-6882</isbn><urls></urls><electronic-resource-num>10.1021/acs.analchem.0c00402</electronic-resource-num></record></Cite></EndNote>[\o"Alam,2020#270"118]。图1-10GO-MWCNT-βCD/SPE电极的制备原理图[118]Figure1-10.SchematicdiagramofthepreparationofGO-MWCNT-βCD/SPEelectrode.参考文献[1] KasongaTK,CoetzeeMAA,KamikaI,etal.Endocrine-disruptivechemicalsascontaminantsofemergingconcerninwastewaterandsurfacewater:Areview[J].JournalofEnvironmentalManagement,2021,277,111485.[2] VieiraWT,deFariasMB,SpaolonziMP,etal.Endocrine-disruptingcompounds:Occ

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论