版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2020-2021备战中考数学复习一元二次方程组专项易错题及详细答案一、一元二次方程1.在等腰三角形△ABC中,三边分别为a、b、c,其中ɑ=4,若b、c是关于x的方程x2﹣(2k+1)x+4(k﹣)=0的两个实数根,求△ABC的周长.【答案】△ABC的周长为10.【解析】【分析】分a为腰长及底边长两种情况考虑:当a=4为腰长时,将x=4代入原方程可求出k值,将k值代入原方程可求出底边长,再利用三角形的周长公式可求出△ABC的周长;当a=4为底边长时,由根的判别式△=0可求出k值,将其代入原方程利用根与系数的关系可求出b+c的值,由b+c=a可得出此种情况不存在.综上即可得出结论.【详解】当a=4为腰长时,将x=4代入原方程,得:解得:当时,原方程为x2﹣6x+8=0,解得:x1=2,x2=4,∴此时△ABC的周长为4+4+2=10;当a=4为底长时,△=[﹣(2k+1)]2﹣4×1×4(k﹣)=(2k﹣3)2=0,解得:k=,∴b+c=2k+1=4.∵b+c=4=a,∴此时,边长为a,b,c的三条线段不能围成三角形.∴△ABC的周长为10.【点睛】本题考查了根的判别式、根与系数的关系、一元二次方程的解、等腰三角形的性质以及三角形的三边关系,分a为腰长及底边长两种情况考虑是解题的关键.2.某建材销售公司在2019年第一季度销售两种品牌的建材共126件,种品牌的建材售价为每件6000元,种品牌的建材售价为每件9000元.(1)若该销售公司在第一季度售完两种建材后总销售额不低于96.6万元,求至多销售种品牌的建材多少件?(2)该销售公司决定在2019年第二季度调整价格,将种品牌的建材在上一个季度的基础上下调,种品牌的建材在上一个季度的基础上上涨;同时,与(1)问中最低销售额的销售量相比,种品牌的建材的销售量增加了,种品牌的建材的销售量减少了,结果2019年第二季度的销售额比(1)问中最低销售额增加,求的值.【答案】(1)至多销售品牌的建材56件;(2)的值是30.【解析】【分析】(1)设销售品牌的建材件,根据售完两种建材后总销售额不低于96.6万元,列不等式求解;(2)根据题意列出方程求解即可.【详解】(1)设销售品牌的建材件.根据题意,得,解这个不等式,得,答:至多销售品牌的建材56件.(2)在(1)中销售额最低时,品牌的建材70件,根据题意,得,令,整理这个方程,得,解这个方程,得,∴(舍去),,即的值是30.【点睛】本题考查了一元二次方程和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程组和不等式求解.3.如图,在△ABC中,AB=6cm,BC=7cm,∠ABC=30°,点P从A点出发,以1cm/s的速度向B点移动,点Q从B点出发,以2cm/s的速度向C点移动.如果P、Q两点同时出发,经过几秒后△PBQ的面积等于4cm2?【答案】经过2秒后△PBQ的面积等于4cm2.【解析】【分析】作出辅助线,过点Q作QE⊥PB于E,即可得出S△PQB=×PB×QE,有P、Q点的移动速度,设时间为t秒时,可以得出PB、QE关于t的表达式,代入面积公式,即可得出答案.【详解】解:如图,过点Q作QE⊥PB于E,则∠QEB=90°.∵∠ABC=30°,∴2QE=QB.∴S△PQB=•PB•QE.设经过t秒后△PBQ的面积等于4cm2,则PB=6﹣t,QB=2t,QE=t.根据题意,•(6﹣t)•t=4.t2﹣6t+8=0.t2=2,t2=4.当t=4时,2t=8,8>7,不合题意舍去,取t=2.答:经过2秒后△PBQ的面积等于4cm2.【点睛】本题考查了一元二次方程的运用,注意对所求的值进行检验,对于不合适的值舍去.4.已知关于x的方程x2﹣(2k+1)x+k2+1=0.(1)若方程有两个不相等的实数根,求k的取值范围;(2)若方程的两根恰好是一个矩形两邻边的长,且k=2,求该矩形的对角线L的长.【答案】(1)k>;(2).【解析】【分析】(1)根据关于x的方程x2-(2k+1)x+k2+1=0有两个不相等的实数根,得出△>0,再解不等式即可;(2)当k=2时,原方程x2-5x+5=0,设方程的两根是m、n,则矩形两邻边的长是m、n,利用根与系数的关系得出m+n=5,mn=5,则矩形的对角线长为,利用完全平方公式进行变形即可求得答案.【详解】(1)∵方程x2-(2k+1)x+k2+1=0有两个不相等的实数根,∴Δ=[-(2k+1)]2-4×1×(k2+1)=4k-3>0,∴k>;(2)当k=2时,原方程为x2-5x+5=0,设方程的两个根为m,n,∴m+n=5,mn=5,∴矩形的对角线长为:.【点睛】本题考查了根的判别式、根与系数的关系、矩形的性质等,一元二次方程根的情况与判别式△的关系:(1)△>0时,方程有两个不相等的实数根;(2)△=0时,方程有两个相等的实数根;(3)△<0时,方程没有实数根.5.已知为正整数,二次方程的两根为,求下式的值:【答案】【解析】由韦达定理,有,.于是,对正整数,有原式=6.元旦期间,某超市销售两种不同品牌的苹果,已知1千克甲种苹果和1千克乙种苹果的进价之和为18元.当销售1千克甲种苹果和1千克乙种苹果利润分别为4元和2元时,陈老师购买3千克甲种苹果和4千克乙种苹果共用82元.(1)求甲、乙两种苹果的进价分别是每千克多少元?(2)在(1)的情况下,超市平均每天可售出甲种苹果100千克和乙种苹果140千克,若将这两种苹果的售价各提高1元,则超市每天这两种苹果均少售出10千克,超市决定把这两种苹果的售价提高x元,在不考虑其他因素的条件下,使超市销售这两种苹果共获利960元,求x的值.【答案】(1)甲、乙两种苹果的进价分别为10元/千克,8元/千克;(2)的值为2或7.【解析】【分析】(1)根据题意列二元一次方程组即可求解,(2)根据题意列一元二次方程即可求解.【详解】(1)解:设甲、乙两种苹果的进价分别为元/千克,元/千克.由题得:解之得:答:甲、乙两种苹果的进价分别为10元/千克,8元/千克(2)由题意得:解之得:,经检验,,均符合题意答:的值为2或7.【点睛】本题考查了二元一次方程组和一元二次方程的实际应用,中等难度,列方程是解题关键.7.关于x的一元二次方程有两个不等实根,.(1)求实数k的取值范围;(2)若方程两实根,满足,求k的值.【答案】(1)k<;(2)k=0.【解析】【分析】(1)根据一元二次方程的根的判别式得出△>0,求出不等式的解集即可;(2)根据根与系数的关系得出x1+x2=-(2k-1)=1-2k,x1•x2=k2,代入x1+x2+x1x2-1=0,即可求出k值.【详解】解:(1)∵关于x的一元二次方程x2+(2k-1)x+k2=0有两个不等实根x1,x2,∴△=(2k-1)2-4×1×k2=-4k+1>0,解得:k<,即实数k的取值范围是k<;(2)由根与系数的关系得:x1+x2=-(2k-1)=1-2k,x1•x2=k2,∵x1+x2+x1x2-1=0,∴1-2k+k2-1=0,∴k2-2k=0∴k=0或2,∵由(1)知当k=2方程没有实数根,∴k=2不合题意,舍去,∴k=0.【点睛】本题考查了解一元二次方程根的判别式和根与系数的关系等知识点,能熟记根的判别式和根与系数的关系的内容是解此题的关键,注意用根与系数的关系解题时要考虑根的判别式,以防错解.8.已知关于x的一元二次方程有两个实数x2+2x+a﹣2=0,有两个实数根x1,x2.(1)求实数a的取值范围;(2)若x12x22+4x1+4x2=1,求a的值.【答案】(1)a≤3;(2)a=﹣1.【解析】试题分析:(1)由根的个数,根据根的判别式可求出a的取值范围;(2)根据一元二次方程根与系数的关系,代换求值即可得到a的值.试题解析:(1)∵方程有两个实数根,∴△≥0,即22﹣4×1×(a﹣2)≥0,解得a≤3;(2)由题意可得x1+x2=﹣2,x1x2=a﹣2,∵x12x22+4x1+4x2=1,∴(a﹣2)2﹣8=1,解得a=5或a=﹣1,∵a≤3,∴a=﹣1.9.关于x的一元二次方程.(1).求证:方程总有两个实数根;(2).若方程的两个实数根都是正整数,求m的最小值.【答案】(1)证明见解析;(2)-1.【解析】【分析】(1)根据一元二次方程根的个数情况与根的判别式关系可以证出方程总有两个实数根.(2)根据题意利用十字相乘法解方程,求得,再根据题意两个根都是正整数,从而可以确定的取值范围,即求出吗的最小值.【详解】(1)证明:依题意,得.,∴.∴方程总有两个实数根.由.可化为:得,∵方程的两个实数根都是正整数,∴.∴.∴的最小值为.【点睛】本题主要考查了一元二次方程根的判别式与根的个数关系和利用十字相乘法解含参数的方程,熟知根的判别式大于零方程有两个不相等的实数根,判别式等于零有两个相等的实数根或只有一个实数根,判别式小于零无根和十字相乘法的法则是解题关键.10.已知关于x的一元二次方程x2﹣6x+(2m+1)=0有实数根.(1)求m的取值范围;(2)如果方程的两个实数根为x1,x2,且2x1x2+x1+x2≥20,求m的取值范围.【答案】(1)m≤4;(2)3≤m≤4.【解析】试题分析:(1)根据判别式的意义得到△=(-6)2-4(2m+1)≥0,然后解不等式即可;(2)根据根与系数的关系得到x1+x2=6,x1x2=2m+1,再利用2x1x2+x1+x2≥20得到2(2m+1)+6≥20,然后解不等式和利用(1)中的结论可确定满足条件的m的取值范围.试题解析:(1)根据题意得△=(-6)2-4(2m+1)≥0,解得m≤4;(2)根据题意得x1+x2=6,x1x2=2m+1,而2x1x2+x1+x2≥20,所以2(2m+1)+6≥20,解得m≥3,而m≤4,所以m的范围为3≤m≤4.11.已知关于x的方程x2-(m+2)x+(2m-1)=0。(1)求证:方程恒有两个不相等的实数根;(2)若此方程的一个根是1,请求出方程的另一个根,并求以此两根为边长的直角三角形的周长。【答案】(1)见详解;(2)4+或4+.【解析】【分析】(1)根据关于x的方程x2-(m+2)x+(2m-1)=0的根的判别式的符号来证明结论.(2)根据一元二次方程的解的定义求得m值,然后由根与系数的关系求得方程的另一根.分类讨论:①当该直角三角形的两直角边是2、3时,②当该直角三角形的直角边和斜边分别是2、3时,由勾股定理求出得该直角三角形的另一边,再根据三角形的周长公式进行计算.【详解】解:(1)证明:∵△=(m+2)2-4(2m-1)=(m-2)2+4,∴在实数范围内,m无论取何值,(m-2)2+4≥4>0,即△>0.∴关于x的方程x2-(m+2)x+(2m-1)=0恒有两个不相等的实数根.(2)∵此方程的一个根是1,∴12-1×(m+2)+(2m-1)=0,解得,m=2,则方程的另一根为:m+2-1=2+1=3.①当该直角三角形的两直角边是1、3时,由勾股定理得斜边的长度为,该直角三角形的周长为1+3+=4+.②当该直角三角形的直角边和斜边分别是1、3时,由勾股定理得该直角三角形的另一直角边为;则该直角三角形的周长为1+3+=4+.12.阅读下面的材料,回答问题:解方程x4﹣5x2+4=0,这是一个一元四次方程,根据该方程的特点,它的解法通常是:设x2=y,那么x4=y2,于是原方程可变为y2﹣5y+4=0①,解得y1=1,y2=4.当y=1时,x2=1,∴x=±1;当y=4时,x2=4,∴x=±2;∴原方程有四个根:x1=1,x2=﹣1,x3=2,x4=﹣2.(1)在由原方程得到方程①的过程中,利用法达到的目的,体现了数学的转化思想.(2)解方程(x2+x)2﹣4(x2+x)﹣12=0.【答案】(1)换元,降次;(2)x1=﹣3,x2=2.【解析】【详解】解:(1)在由原方程得到方程①的过程中,利用换元法达到降次的目的,体现了数学的转化思想;(2)设x2+x=y,原方程可化为y2﹣4y﹣12=0,解得y1=6,y2=﹣2.由x2+x=6,得x1=﹣3,x2=2.由x2+x=﹣2,得方程x2+x+2=0,b2﹣4ac=1﹣4×2=﹣7<0,此时方程无实根.所以原方程的解为x1=﹣3,x2=2.13.自年月日零时起,高铁开通,某旅行社为吸引广大市民组团去仙都旅游,推出了如下收费标准:如果人数不超过人,人均旅游费用为元,如果人数超过人,每增加人,人均旅游费用降低元,但人均旅游费用不得低于元.如果某单位组织人参加仙都旅游,那么需支付旅行社旅游费用________元;现某单位组织员工去仙都旅游,共支付给该旅行社旅游费用元,那么该单位有多少名员工参加旅游?【答案】(1)2280;(2)15【解析】【分析】对于(1)根据人数超过10人,每增加1人,人均旅游费用降低5元,但人均旅游费用不得低于150来求解;对于(2)设这次旅游可以安排x人参加,而由10×200=2000<2625,可以得出人数大于10人,则根据x列出方程:(10+x)(200-5x)=2625,求出x,然后根据人均旅游费用降低5元,但人均旅游费用不得低于150来求出x的范围,最后得出x的值.【详解】(1)因为.因此参加人比人多,设在人基础上再增加人,由题意得:.解得
,∵,∴,经检验
是方程的解且符合题意,(舍去).答:该单位共有名员工参加旅游.【点睛】本题主要考查一元二次方程的应用和一元一次不等式的应用,根据题意作出判断,列出一元二次方程,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026安徽合肥技师学院招聘劳务外包辅助教学教师10人笔试备考试题及答案解析
- 2026中国航天科工集团第六研究院41所校园招聘备考题库带答案详解
- 2026山东淄博市周村区教育和体育局所属事业单位招聘教师21人备考题库完整答案详解
- 2026江西南昌某军队院校幼儿园社会招聘3人备考题库及一套参考答案详解
- 2026江苏苏州张家港农商银行寒假实习招募备考题库及答案详解(新)
- 2025年食品安全操作规程与质量控制
- 2026年辅警服务协议
- 2026中国银行秋招面试题及答案
- 2026中国航油集团贵州石油有限公司招聘1人备考题库及参考答案详解1套
- 2025甘肃天水市甘谷县公安局招聘警务辅助人员50人备考题库及答案详解(考点梳理)
- UCL介绍教学课件
- 广东省衡水金卷2025-2026学年高三上学期12月联考物理试题(含答案)
- 扁鹊凹凸脉法课件
- 2026年开封大学单招职业适应性测试题库及完整答案详解1套
- 北京市2025北京市体育设施管理中心应届毕业生招聘2人笔试历年参考题库典型考点附带答案详解(3卷合一)2套试卷
- 建筑施工现场材料采购流程
- DB31∕T 1234-2020 城市森林碳汇计量监测技术规程
- 园林绿化施工工艺及注意事项
- 2025年高中语文必修上册《登泰山记》文言文对比阅读训练(含答案)
- 2025年金蝶AI苍穹平台新一代企业级AI平台报告-
- 2026届山东菏泽一中高三化学第一学期期末达标测试试题含解析
评论
0/150
提交评论