解析卷-人教版九年级数学上册第二十四章圆定向练习试卷(含答案详解)_第1页
解析卷-人教版九年级数学上册第二十四章圆定向练习试卷(含答案详解)_第2页
解析卷-人教版九年级数学上册第二十四章圆定向练习试卷(含答案详解)_第3页
解析卷-人教版九年级数学上册第二十四章圆定向练习试卷(含答案详解)_第4页
解析卷-人教版九年级数学上册第二十四章圆定向练习试卷(含答案详解)_第5页
已阅读5页,还剩24页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

人教版九年级数学上册第二十四章圆定向练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题30分)一、单选题(10小题,每小题3分,共计30分)1、如图,已知长方形中,,圆B的半径为1,圆A与圆B内切,则点与圆A的位置关系是(

)A.点C在圆A外,点D在圆A内 B.点C在圆A外,点D在圆A外C.点C在圆A上,点D在圆A内 D.点C在圆A内,点D在圆A外2、如图,⊙O中,弦AB⊥CD,垂足为E,F为的中点,连接AF、BF、AC,AF交CD于M,过F作FH⊥AC,垂足为G,以下结论:①;②HC=BF:③MF=FC:④,其中成立的个数是()A.1个 B.2个 C.3个 D.4个3、如图物体由两个圆锥组成,其主视图中,.若上面圆锥的侧面积为1,则下面圆锥的侧面积为(

)A.2 B. C. D.4、如图,一个油桶靠在直立的墙边,量得并且则这个油桶的底面半径是()A. B. C. D.5、如图,⊙O的直径垂直于弦,垂足为.若,,则的长是(

)A. B. C. D.6、如图所示,矩形纸片中,,把它分割成正方形纸片和矩形纸片后,分别裁出扇形和半径最大的圆,恰好能作为一个圆锥的底面和侧面,则圆锥的表面积为(

)A. B. C. D.7、在平面直角坐标系中,⊙O的半径为2,点A(1,)与⊙O的位置关系是(

)A.在⊙O上 B.在⊙O内 C.在⊙O外 D.不能确定8、如图,正五边形内接于⊙,为上的一点(点不与点重合),则的度数为(

)A. B. C. D.9、已知一个扇形的弧长为,圆心角是,则它的半径长为()A.6cm B.5cm C.4cm D.3cm10、如图,已知是的两条切线,A,B为切点,线段交于点M.给出下列四种说法:①;②;③四边形有外接圆;④M是外接圆的圆心,其中正确说法的个数是(

)A.1 B.2 C.3 D.4第Ⅱ卷(非选择题70分)二、填空题(5小题,每小题4分,共计20分)1、如图,直线y=﹣x+6与x轴、y轴分别交于A、B两点,点P是以C(﹣1,0)为圆心,1为半径的圆上一点,连接PA,PB,则△PAB面积的最大值为_____.2、如图,在中,点是的中点,连接交弦于点,若,,则的长是______.3、某圆的周长是12.56米,那么它的半径是______________,面积是__________.4、如图,在⊙O中,是⊙O的直径,,点是点关于的对称点,是上的一动点,下列结论:①;②;③;④的最小值是10.上述结论中正确的个数是_________.5、若一个扇形的弧长是,面积是,则扇形的圆心角是__________度.三、解答题(5小题,每小题10分,共计50分)1、如图,是的直径,点是上一点,点是延长线上一点,,是的弦,.(1)求证:直线是的切线;(2)若,求的半径;(3)若于点,点为上一点,连接,,,请找出,,之间的关系,并证明.2、如图,AD、BC是⊙O的两条弦,且AB=CD,求证:AD=BC.3、如图,AB为⊙O的直径,C、D为⊙O上的两个点,==,连接AD,过点D作DE⊥AC交AC的延长线于点E.(1)求证:DE是⊙O的切线.(2)若直径AB=6,求AD的长.4、如图,在△ABC中,以AB为直径的⊙O交AC于点M,弦交AB于点E,且ME=3,AE=4,AM=5.(1)求证:BC是⊙O的切线;(2)求⊙O的直径AB的长度.5、如图,在中,∠=45°,,以为直径的⊙与边交于点.(1)判断直线与⊙的位置关系,并说明理由;(2)若,求图中阴影部分的面积.-参考答案-一、单选题1、C【解析】【分析】根据内切得出圆A的半径,再判断点D、点E到圆心的距离即可【详解】∵圆A与圆B内切,,圆B的半径为1∴圆A的半径为5∵<5∴点D在圆A内在Rt△ABC中,∴点C在圆A上故选:C【考点】本题考查点与圆的位置关系、圆与圆的位置关系、勾股定理,熟练掌握点与圆的位置关系是关键2、C【解析】【分析】根据弧,弦,圆心角之间的关系,圆周角定理以及三角形内角和定理一一判断即可.【详解】解:∵F为的中点,∴,故①正确,∴∠FCM=∠FAC,∵∠FCG=∠ACM+∠FCM,∠AME=∠FMC=∠ACM+∠FAC,∴∠AME=∠FMC=∠FCG>∠FCM,∴FC>FM,故③错误,∵AB⊥CD,FH⊥AC,∴∠AEM=∠CGF=90°,∴∠CFH+∠FCG=90°,∠BAF+∠AME=90°,∴∠CFH=∠BAF,∴,∴HC=BF,故②正确,∵∠AGF=90°,∴∠CAF+∠AFH=90°,∴=180°,∴=180°,∴,故④正确,故选:C.【点评】本题考查圆心角,弧,弦之间的关系,三角形内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考选择题中的压轴题.3、D【解析】【分析】先证明△ABD为等腰直角三角形得到∠ABD=45°,BD=AB,再证明△CBD为等边三角形得到BC=BD=AB,利用圆锥的侧面积的计算方法得到上面圆锥的侧面积与下面圆锥的侧面积的比等于AB:CB,从而得到下面圆锥的侧面积.【详解】∵∠A=90°,AB=AD,∴△ABD为等腰直角三角形,∴∠ABD=45°,BD=AB,∵∠ABC=105°,∴∠CBD=60°,而CB=CD,∴△CBD为等边三角形,∴BC=BD=AB,∵上面圆锥与下面圆锥的底面相同,∴上面圆锥的侧面积与下面圆锥的侧面积的比等于AB:CB,∴下面圆锥的侧面积=×1=.故选D.【考点】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了等腰直角三角形和等边三角形的性质.4、C【解析】【分析】根据切线的性质,连接过切点的半径,构造正方形求解即可.【详解】如图所示:设油桶所在的圆心为O,连接OA,OC,∵AB、BC与⊙O相切于点A、C,∴OA⊥AB,OC⊥BC,又∵AB⊥BC,OA=OC,∴四边形OABC是正方形,∴OA=AB=BC=OC=0.8m,故选:C.【考点】考查了切线的性质和正方形的判定、性质,解题关键是理解和掌握切线的性质.5、C【解析】【分析】根据直角三角形的性质可求出CE=1,再根据垂径定理可求出CD.【详解】解:∵⊙O的直径垂直于弦,∴∵,,∴CE=1∴CD=2.故选:C.【考点】本题考查了直角三角形的性质,垂径定理等知识点,能求出CE=DE是解此题的关键.6、B【解析】【分析】设圆锥的底面的半径为rcm,则DE=2rcm,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长得到2πr,解方程求出r,然后求得直径即可.【详解】解:设圆锥的底面的半径为rcm,则AE=BF=6-2r根据题意得2πr,解得r=1,侧面积=,底面积=所以圆锥的表面积=,故选:B.【考点】本题综合考查有关扇形和圆锥的相关计算.解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:(1)圆锥的母线长等于侧面展开图的扇形半径;(2)圆锥的底面周长等于侧面展开图的扇形弧长.正确对这两个关系的记忆是解题的关键.7、A【解析】【分析】根据点A的坐标,求出OA=2,根据点与圆的位置关系即可做出判断.【详解】解:∵点A的坐标为(1,),∴由勾股定理可得:OA=,又∵⊙O的半径为2,∴点A在⊙O上.故选:A.【考点】本题考查了点和圆的位置关系,点和圆的位置关系是由点到圆心的距离和圆的半径间的大小关系确定的:(1)当时,点在圆外;(2)当时,点在圆上;(3)当时,点在圆内.8、B【解析】【分析】根据圆周角的性质即可求解.【详解】连接CO、DO,正五边形内心与相邻两点的夹角为72°,即∠COD=72°,同一圆中,同弧或同弦所对应的圆周角为圆心角的一半,故∠CPD=,故选B.【考点】此题主要考查圆内接多边形的性质,解题的关键是熟知圆周角定理的应用.9、A【解析】【分析】设扇形半径为rcm,根据扇形弧长公式列方程计算即可.【详解】设扇形半径为rcm,则=5π,解得r=6cm.故选A.【考点】本题主要考查扇形弧长公式.10、C【解析】【分析】由切线长定理判断①,结合等腰三角形的性质判断②,利用切线的性质与直角三角形的斜边上的中线等于斜边的一半,判断③,利用反证法判断④.【详解】如图,是的两条切线,故①正确,故②正确,是的两条切线,取的中点,连接,则所以:以为圆心,为半径作圆,则共圆,故③正确,M是外接圆的圆心,与题干提供的条件不符,故④错误,综上:正确的说法是个,故选C.【考点】本题考查的是切线长定理,三角形的外接圆,四边形的外接圆,掌握以上知识是解题的关键.二、填空题1、32【解析】【分析】如图,作CH⊥AB于H交⊙O于E、F,求出A、B的坐标,根据勾股定理求出AB,再由S△ABC=AB•CH=OB•AC求出点C到AB的距离CH,即可求出圆C上点到AB的最大距离,根据面积公式求出即可.【详解】如图,作CH⊥AB于H交⊙O于E、F,∵直线y=﹣x+6与x轴、y轴分别交于A、B两点,∴当y=0时,可得0=﹣x+6,解得:x=8,∴A(8,0),当x=0时,得y=6,∴B(0,6),∴OA=8,OB=6,∴=10,∵C(﹣1,0),∴AC=8+1=9,∴S△ABC=AB•CH=OB•AC,∴,∴CH=5.4,∴FH=CH+CF=5.4+1=6.4,即⊙C上到AB的最大距离为6.4,∴△PAB面积的最大值=×10×6.4=32,故答案为32.【考点】本题考查了三角形的面积,勾股定理、三角形等面积法求高、求圆心到直线的距离等知识,解此题的关键是求出圆上的点到直线AB的最大距离.2、8.【解析】【分析】连结OA,OB,点是的中点,半径交弦于点,根据垂径定理可得OC⊥AB,AD=BD,由,,求半径OC=5,OA=5,在Rt△OAD中,由勾股定理得DA=即可,【详解】解:连结OA,OB,∵点是的中点,半径交弦于点,∴OC⊥AB,AD=BD,∵,,∴OC=OD+CD=3+2=5,∴OA=OC=5,在Rt△OAD中,由勾股定理得DA=,∴AB=2AD=2×4=8,故答案为8.【考点】本题考查垂径定理的推论,勾股定理,线段中点定义,掌握垂径定理的推论,平分弧的直径垂直平分这条弧所对的弦,勾股定理,线段中点定义是解题关键.3、

2米

12.56平方米【解析】【分析】根据周长公式转化为,将C=12.56代入进行计算得到半径,继续利用面积公式,代入半径的值求出面积的结果.【详解】因为C=2πr,所以==2,所以r=2(米),因为S=πr2=3.14×22=12.56(平方米).故答案为:2米

12.56平方米.【考点】考查圆的面积和周长与半径之间的关系,学生必须熟练掌握圆的面积和周长的求解公式,选择相应的公式进行计算,利用公式是解题的关键.4、3【解析】【分析】①根据点是点关于的对称点可知,进而可得;②根据一条弧所对的圆周角等于圆心角的一半即可得结论;③根据等弧对等角,可知只有当和重合时,,;④作点关于的对称点,连接,DF,此时的值最短,等于的长,然后证明DF是的直径即可得到结论.【详解】解:,点是点关于的对称点,,,①正确;,∴②正确;的度数是60°,的度数是120°,∴只有当和重合时,,∴只有和重合时,,③错误;作关于的对称点,连接,交于点,连接交于点,此时的值最短,等于的长.连接,并且弧的度数都是60°,是的直径,即,∴当点与点重合时,的值最小,最小值是10,∴④正确.故答案为:3.【考点】本题考查了圆的综合知识,涉及圆周角、圆心角、弧、弦的关系、最短距离的确定等,掌握圆的基本性质并灵活运用是解题关键.5、60【解析】【分析】根据扇形的面积公式求出半径,然后根据弧长公式求出圆心角即可.【详解】解:扇形的面积==6π,解得:r=6,又∵=2π,∴n=60.故答案为:60.【考点】此题考查了扇形的面积和弧长公式,解题的关键是掌握运算方法.三、解答题1、(1)见解析;(2)3;(3),理由见解析【解析】【分析】(1)先求出∠BAD=120°,再求出∠OAB,进而得出∠OAD=90°,即可得出结论;(2)先判断出△AOC是等边三角形,得出AC=OC,再判断出AC=CD,即可得出结论;(3)先判断出∠CAP=∠CEM,进而得出△ACP≌△ECM(SAS),进而得出CM=CP,∠APC=∠M=30°,再判断出,即可得出结论.【详解】(1)证明:如图,连接,,,,,,,,,点在上,∴直线是的切线;(2)解:如图1,连接,由(1)知,,,,是等边三角形,,,,,,即的半径为3;(3),理由:如图,,,连接,延长至,使,连接,,为的直径,,四边形是的内接四边形,,,,,过点作于,,在中,,,,,,,即.【考点】此题是圆的综合题,主要考查了切线的判定和性质,等边三角形的判定和勾股定理,构造出直角三角形是解本题的关键.2、证明见解析.【解析】【分析】根据AB=CD,得出,进而得出,即可解答.【详解】证明:∵AB,CD是⊙O的两条弦,且AB=CD,∴,∴,∴,∴AD=BC.【考点】此题考查圆心角、弧、弦的关系,关键是利用三者的关系解答.3、(1)见解析;(2)3【解析】【分析】(1)连接OD,根据已知条件得到∠BOD=180°=60°,根据等腰三角形的性质得到∠ADO=∠DAB=30°,得到∠EDA=60°,求得OD⊥DE,于是得到结论;(2)连接BD,根据圆周角定理得到∠ADB=90°,解直角三角形即可得到结论.【详解】(1)证明:连接OD,∵,∴∠BOD=180°=60°,∵,∴∠EAD=∠DAB=BOD=30°,∵OA=OD,∴∠ADO=∠DAB=30°,∵DE⊥AC,∴∠E=90°,∴∠EAD+∠EDA=90°,∴∠EDA=60°,∴∠EDO=∠EDA+∠ADO=90°,∴OD⊥DE,∴DE是⊙O的切线;(2)解:连接BD,∵AB为⊙O的直径,∴∠ADB=90°,∵∠DAB=30°,AB=6,∴BD=AB=3,∴AD==3.【考点】本题考查了切线的证明,及线段长度的计算,熟知圆的性质及切线的证明方法,以及含30°角的直角三角形的特点是解题的关键.4、(1)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论