广东省广州市荔湾、海珠部分学校2026届高一上数学期末质量跟踪监视模拟试题含解析_第1页
广东省广州市荔湾、海珠部分学校2026届高一上数学期末质量跟踪监视模拟试题含解析_第2页
广东省广州市荔湾、海珠部分学校2026届高一上数学期末质量跟踪监视模拟试题含解析_第3页
广东省广州市荔湾、海珠部分学校2026届高一上数学期末质量跟踪监视模拟试题含解析_第4页
广东省广州市荔湾、海珠部分学校2026届高一上数学期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省广州市荔湾、海珠部分学校2026届高一上数学期末质量跟踪监视模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若,,且,则A. B.C. D.2.在中,,则的值为A. B.C. D.23.《掷铁饼者》取材于希腊的现实生活中的体育竞技活动,刻画的是一名强健的男子在掷铁饼过程中最具有表现力的瞬间.现在把掷铁饼者张开的双臂近似看成一张拉满弦的“弓”,掷铁饼者的手臂长约米,肩宽约为米,“弓”所在圆的半径约为米,你估测一下掷铁饼者双手之间的距离约为(参考数据:,)()A.米 B.米C.米 D.米4.农科院的专家为了了解新培育的甲、乙两种麦苗的长势情况,从种植有甲、乙两种麦苗的两块试验田中各抽取6株麦苗测量株高,得到的数据如下(单位:cm):甲:9,10,11,12,10,20;乙:8,14,13,10,12,21.根据所抽取的甲、乙两种麦苗的株高数据,给出下面四个结论,其中正确的结论是()A.甲种麦苗样本株高的平均值大于乙种麦苗样本株高的平均值B.甲种麦苗样本株高的极差小于乙种麦苗样本株高的极差C.甲种麦苗样本株高的75%分位数为10D.甲种麦苗样本株高的中位数大于乙种麦苗样本株高的中位数5.已知函数,则,()A.4 B.3C. D.6.函数y=的单调递减区间是()A.(-∞,1) B.[1,+∞)C.(-∞,-1) D.(-1,+∞)7.已知幂函数的图象过点,则该函数的解析式为()A. B.C. D.8.在正方体AC1中,AA1与B1D所成角的余弦值是()A. B.C. D.9.某组合体的三视图如下,则它的体积是A. B.C. D.10.空间直角坐标系中,点关于平面的对称点为点,关于原点的对称点为点,则间的距离为A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知,则函数的最大值为__________.12.若两平行直线2x+y-4=0与y=-2x-k-2的距离不大于,则k的取值范围是____13.已知,,且,则的最小值为________.14.已知某扇形的周长是,面积为,则该扇形的圆心角的弧度数是______.15.设函数=,则=16.已知某扇形的弧长为,面积为,则该扇形的圆心角(正角)为_________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知平面直角坐标系中,,,Ⅰ若三点共线,求实数的值;Ⅱ若,求实数的值;Ⅲ若是锐角,求实数的取值范围18.已知定义域为的函数是奇函数.(1)求的值;(2)判断函数单调性(只写出结论即可);(3)若对任意的不等式恒成立,求实数的取值范围19.已知函数(1)求证:在上是单调递增函数;(2)若在上的值域是,求a的值20.如图,已知直角梯形中,且,又分别为的中点,将△沿折叠,使得.(Ⅰ)求证:AE⊥平面CDE;(Ⅱ)求证:FG∥平面BCD;(Ⅲ)在线段AE上找一点R,使得平面BDR⊥平面DCB,并说明理由21.设函数是增函数,对于任意都有(1)写一个满足条件的;(2)证明是奇函数;(3)解不等式

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】∵,∴2既是方程的解,又是方程的解令a是方程的另一个根,b是方程的另一个根由韦达定理可得:2×a=6,即a=3,∴2+a=p,∴p=52+b=−6,即b=−8,∴2×b=−16=−q,∴q=16∴p+q=21故选:A2、C【解析】直接利用三角函数关系式的恒等变换和特殊角的三角函数的值求出结果【详解】在中,,则,,,,故选C【点睛】本题考查的知识要点:三角函数关系式的恒等变换和特殊角三角函数的值的应用,主要考查学生的运算能力和转化能力,属于基础题型3、C【解析】先计算弓所在的扇形的弧长,算出其圆心角后可得双手之间的距离.【详解】弓形所在的扇形如图所示,则的长度为,故扇形的圆心角为,故.故选:C.4、B【解析】对A,由平均数求法直接判断即可;由极差概念可判断B,结合百分位数概念可求C;将甲乙两组数据排序,可判断D.【详解】甲组数据的平均数为9+10+11+12+10+206=12,乙组数据的平均数为8+14+13+10+12+216甲种麦苗样本株高的极差为11,乙种麦苗样本株高的极差为13,故B正确;6×0.75=4.5,故甲种麦苗样本株高的75%分位数为第5位数,为12,故C错误;甲种麦苗样本株高的中位数为10.5,乙种麦苗样本株高的中位数为12.5,故D错误.故选:B5、D【解析】根据分段函数解析式代入计算可得;【详解】解:因为,,所以,所以故选:D6、A【解析】令t=-x2+2x﹣1,则y,故本题即求函数t的增区间,再结合二次函数的性质可得函数t的增区间【详解】令t=-x2+2x﹣1,则y,故本题即求函数t的增区间,由二次函数的性质可得函数t的增区间为(-∞,1),所以函数的单调递减区间为(-∞,1).故答案为A【点睛】本题主要考查指数函数和二次函数的单调性,考查复合函数的单调性,意在考查学生对这些知识的掌握水平和分析推理能力.7、C【解析】设出幂函数的解析式,根据点求得解析式.【详解】设,依题意,所以.故选:C8、A【解析】画出图象如下图所示,直线与所成的角为,其余弦值为.故选A.9、A【解析】,故选A考点:1、三视图;2、体积【方法点晴】本题主要考查三视图和锥体的体积,计算量较大,属于中等题型.应注意把握三个视图的尺寸关系:主视图与俯视图长应对正(简称长对正),主视图与左视图高度保持平齐(简称高平齐),左视图与俯视图宽度应相等(简称宽相等),若不按顺序放置和不全时,则应注意三个视图名称.此外本题应注意掌握锥体和柱体的体积公式10、C【解析】分析:求出点关于平面的对称点,关于原点的对称点,直接利用空间中两点间的距离公式,即可求解结果.详解:在空间直角坐标系中,点关于平面的对称点,关于原点的对称点,则间的距离为,故选C.点睛:本题主要考查了空间直角坐标系中点的表示,以及空间中两点间的距离的计算,着重考查了推理与计算能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】换元,,化简得到二次函数,根据二次函数性质得到最值.【详解】设,,则,,故当,即时,函数有最大值为.故答案为:.【点睛】本题考查了指数型函数的最值,意在考查学生的计算能力,换元是解题的关键.12、【解析】利用平行线之间的距离及两直线不重合列出不等式,求解即可【详解】y=﹣2x﹣k﹣2的一般式方程为2x+y+k+2=0,则两平行直线的距离d得,|k+6|≤5,解得﹣11≤k≤﹣1,当k+2=﹣4,即k=﹣6,此时两直线重合,所以k的取值范围是故答案为【点睛】本题考查了两平行直线间的距离,考查两直线平行的条件,考查计算能力,属于基础题.13、12【解析】,展开后利用基本不等式可求【详解】∵,,且,∴,当且仅当,即,时取等号,故的最小值为12故答案为:1214、2【解析】由扇形的周长和面积,可求出扇形的半径及弧长,进而可求出该扇形的圆心角.【详解】设扇形的半径为,所对弧长为,则有,解得,故.故答案为:2.【点睛】本题考查扇形面积公式、弧长公式的应用,考查学生的计算求解能力,属于基础题.15、【解析】由题意得,∴答案:16、【解析】根据给定条件求出扇形所在圆的半径即可计算作答.【详解】设扇形所在圆的半径为,扇形弧长为,即,由扇形面积得:,解得,所以该扇形的圆心角(正角)为.故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ)-2;(Ⅱ);(Ⅲ),且【解析】Ⅰ根据三点共线,即可得出,并求出,从而得出,求出;Ⅱ根据即可得出,进行数量积的坐标运算即可求出的值;Ⅲ根据是锐角即可得出,并且不共线,可求出,从而得出,且,解出的范围即可【详解】Ⅰ,B,P三点共线;;;;;Ⅱ;;;Ⅲ若是锐角,则,且不共线;;,且;解得,且;实数的取值范围为,且【点睛】本题主要考查向量平行时的坐标关系,向量平行的定义,以及向量垂直的充要条件,向量数量积的坐标运算,属于中档题.利用向量的位置关系求参数是出题的热点,主要命题方式有两个:(1)两向量平行,利用解答;(2)两向量垂直,利用解答.18、(1),;(2)见解析;(3).【解析】(1)根据函数奇偶性得,,解得的值;最后代入验证,(2)可举例比较大小确定单调性,(3)根据函数奇偶性与单调性将不等式化简为,再根据恒成立转化为对应函数最值问题,最后根据函数最值得结果.【详解】(1)在上是奇函数,∴,∴,∴,∴,∴,∴,∴,∴,经检验知:,∴,(2)由(1)可知,在上减函数.(3)对于恒成立,对于恒成立,在上是奇函数,对于恒成立,又在上是减函数,,即对于恒成立,而函数在上的最大值为2,,∴实数的取值范围为【点睛】对于求不等式成立时的参数范围问题,在可能的情况下把参数分离出来,使不等式一端是含有参数的不等式,另一端是一个区间上具体的函数,这样就把问题转化为一端是函数,另一端是参数的不等式,便于问题的解决.19、(1)证明见解析;(2)【解析】(1)利用函数单调性的定义,设,再将变形,证明差为正即可;(2))由(1)在上是单调递增函数,从而在上单调递增,由可求得a的值.【详解】,在上是单调递增函数,(2)在上是单调递增函数,在上单调递增,所以.【点睛】本题考查函数单调性的判断与证明,着重考查函数单调性的定义及其应用,属于中档题.20、(Ⅰ)(Ⅱ)(Ⅲ)见解析【解析】(Ⅰ)(Ⅱ)利用判定定理证明线面平行时,关键是在平面内找一条与已知直线平行的直线,解题时可先直观判断平面内是否已有,若没有,则需作出该直线,常考虑三角形的中位线、平行四边形的对边或过平行线分线段成比例等.证明直线和平面垂直的常用方法:(1)利用判定定理.(2)利用判定定理的推论.(3)利用面面平行的性质.(4)利用面面垂直的性质.(Ⅲ)判定面面垂直的方法(1)面面垂直的定义,即证两平面所成的二面角为直角;(2)面面垂直的判定定理试题解析:(1)由已知得DE⊥AE,AE⊥EC.∵DE∩EC=E,DE、EC⊂平面DCE.∴AE⊥平面CDE.(2)取AB中点H,连接GH、FH,∴GH∥BD,FH∥BC,又GH∩FH=H,∴平面FHG∥平面BCD,∴GF∥平面BCD.(3)取线段AE的中点R,则平面BDR⊥平面DCB取线段DC的中点M,取线段DB中点H,连接MH,RH,BR,DR在△DEC中,∵M为线段DC,H为线段DB中点,R为线段AE中点又,∴RH⊥DC10分∴RH⊥面DCB∵RH⊂平面DRB平面DRB⊥平面DCB即取AE中点R时,有平面DBR⊥

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论