版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省镇江市第一中学2026届高一上数学期末调研模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.《掷铁饼者》取材于希腊的现实生活中的体育竞技活动,刻画的是一名强健的男子在掷铁饼过程中最具有表现力的瞬间.现在把掷铁饼者张开的双臂近似看成一张拉满弦的“弓”,掷铁饼者的手臂长约为米,肩宽约为米,“弓”所在圆的半径约为1.25米,则掷铁饼者双手之间的距离约为()A.1.012米 B.1.768米C.2.043米 D.2.945米2.下列运算中,正确的是()A. B.C. D.3.下列四个几何体中,每个几何体的三视图中有且仅有两个视图相同的是A.①② B.②③C.③④ D.②④4.设正实数满足,则的最大值为()A. B.C. D.5.函数的一条对称轴是()A. B.C. D.6.如图,在平面四边形ABCD,,,,.若点E为边上的动点,则的取值范围为()A. B.C. D.7.方程的实数根所在的区间是()A. B.C. D.8.已知光线每通过一块特制玻璃板,强度要减弱,要使通过玻璃板光线强度减弱到原来的以下,则至少需要重叠玻璃版块数为(参考数据:)()A.4 B.5C.6 D.79.如图,四面体中,,且,分别是的中点,则与所成的角为A. B.C. D.10.若圆上有且只有两个点到直线的距离等于1,则半径r的取值范围是A.(4,6) B.[4,6]C.(4,5) D.(4,5]二、填空题:本大题共6小题,每小题5分,共30分。11.如果实数满足条件,那么的最大值为__________12.若,则_________.13.已知函数,若方程有四个不同的解,且,则的最小值是______,的最大值是______.14.将函数的图象向左平移个单位长度得到函数的图象,若使得,且的最小值为,则_________.15.若,则_____________.16.已知关于不等式的解集为,则的最小值是___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,,(1)求和;(2)求角的值18.为了解学生的周末学习时间(单位:小时),高一年级某班班主任对本班40名学生某周末的学习时间进行了调查,将所得数据整理绘制出如图所示的频率分布直方图,根据直方图所提供的信息:(1)求出图中a的值;(2)求该班学生这个周末的学习时间不少于20小时的人数;(3)如果用该班学生周末的学习时间作为样本去推断该校高一年级全体学生周末的学习时间,这样推断是否合理?说明理由19.在平面直角坐标系中,已知角α的始边为x轴的非负半轴,终边经过点P(-,)(Ⅰ)求cos(α-π)的值;(Ⅱ)若tanβ=2,求的值20.已知全集U=R,集合,,求:(1)A∩B;(2).21.已知直线经过点(1)若点在直线上,求直线的方程;(2)若直线与直线平行,求直线的方程
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】由题分析出这段弓所在弧长,结合弧长公式求出其所对圆心角,双手之间的距离为其所对弦长【详解】解:由题得:弓所在的弧长为:;所以其所对的圆心角;两手之间的距离故选:B2、C【解析】根据对数和指数的运算法则逐项计算即可.【详解】,故A错误;,故B错误;,故C正确;,故D错误.故选:C.3、D【解析】图①的三种视图均相同;图②的正视图与侧视图相同;图③的三种视图均不相同;图④的正视图与侧视图相同.故选D4、C【解析】根据基本不等式可求得最值.【详解】由基本不等式可得,即,解得,当且仅当,即,时,取等号,故选:C.5、B【解析】由余弦函数的对称轴为,应用整体代入法求得对称轴为,即可判断各项的对称轴方程是否正确.【详解】由余弦函数性质,有,即,∴当时,有.故选:B6、A【解析】由已知条件可得,设,则,由,展开后,利用二次函数性质求解即可.【详解】∵,因为,,,所以,连接,因为,所以≌,所以,所以,则,设,则,∴,,,,所以,因为,所以.故选:A7、B【解析】令,因为,且函数在定义域内单调递增,故方程的解所在的区间是,故选B.8、D【解析】设至少需要经过这样的块玻璃板,则,即,两边同时取以10为底的对数,可得,进而求解即可,需注意【详解】设至少需要经过这样的块玻璃板,则,即,所以,即,因为,所以,故选:D【点睛】本题考查利用对数的运算性质求解,考查指数函数的实际应用9、B【解析】设为中点,由中位线可知,所以就是所求两条之间所成的角,且三角形为等腰直角三角形你给,所以.考点:空间两条直线所成的角.【思路点晴】求异面直线所成的角常采用“平移线段法”,平移的方法一般有三种类型:利用图中已有的平行线平移;利用特殊点(线段的端点或中点)作平行线平移;补形平移.计算异面直线所成的角通常放在三角形中进行.平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面问题化归为共面问题来解决10、A【解析】由圆,可得圆心的坐标为圆心到直线的距离为:由得所以的取值范围是故答案选点睛:本题的关键是理解“圆上有且只有两个点到直线的距离等于1”,将其转化为点到直线的距离,结合题意计算求得结果二、填空题:本大题共6小题,每小题5分,共30分。11、1【解析】先根据约束条件画出可行域,再利用几何意义求最值,表示直线在y轴上的截距,只需求出可行域直线在y轴上的截距最大值即可【详解】先根据约束条件画出可行域,当直线过点时,z最大是1,故答案为1【点睛】本题主要考查了简单的线性规划,以及利用几何意义求最值,属于基础题12、##【解析】依题意利用诱导公式及二倍角公式计算可得;【详解】解:因为,所以.故答案为:.13、①.1②.4【解析】画出的图像,再数形结合分析参数的的最小值,再根据对称性与函数的解析式判断中的定量关系化简再求最值即可.【详解】画出的图像有:因为方程有四个不同的解,故的图像与有四个不同的交点,又由图,,故的取值范围是,故的最小值是1.又由图可知,,,故,故.故.又当时,.当时,,故.又在时为减函数,故当时取最大值.故答案为:(1).1(2).4【点睛】本题主要考查了数形结合求解函数零点个数以及范围的问题,需要根据题意分析交点间的关系,并结合函数的性质求解.属于难题.14、【解析】根据三角函数的图形变换,求得,根据,不妨设,求得,,得到则,根据题意得到,即可求解.【详解】将函数的图象向左平移个单位长度,可得,又由,不妨设,由,解得,即,又由,解得,即则,因为的最小值为,可得,解得或,因为,所以.故答案为:15、【解析】平方得16、【解析】由题知,进而根据基本不等式求解即可.【详解】解:因为关于的不等式的解集为,所以是方程的实数根,所以,因为,所以,当且仅当,即时等号成立,所以的最小值是故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】(1)根据以及同角三角函数基本关系,即可求出结果;(2)由得,进而可求出的值,再由两角差的正切公式即可求出结果.【详解】(1)已知,由,解得.(2)由得又,,【点睛】本题主要考查三角恒等变换,熟记同角三角函数基本关系以及两角差的正切公式即可,属于基础题型.18、(1)(2)9(3)不合理,理由见解析【解析】(1)根据频率分布直方图中,小矩形面积和为求解即可;(2)首先求学习时间不少于20小时的频率,再根据样本容量乘以频率=人数,计算结果;(3)结合样本来自同一个班级,故不具有代表性.【小问1详解】解:因为频率分布直方图中,小矩形面积和为,所以,解得.【小问2详解】解:由图可知,该班学生周末的学习时间不少于20小时的频率为则40名学生中周末的学习时间不少于20小时的人数为【小问3详解】解:不合理,样本的选取只选在高一某班,不具有代表性19、(I);(II).【解析】由任意角三角函数的定义可得,,(Ⅰ)可求(Ⅱ)有,,利用诱导公式及同角基本关系即可化简求解【详解】解:由题意可得cosα=,sin,(Ⅰ)cos(α-π)=-cosα=,(Ⅱ)∵tanβ=2,tanα=,∴====【点睛】本题主要考查了三角函数的定义,同角基本关系的基本应用,属于基础试题.20、(1);(2)(-∞,3)∪[4,+∞)【解析】(1)化简集合B,直接求交集即可;(2)求出集合B的补集,进而求并集即可.【详解】(1)由已知得:B=(-∞,3),A=[1,4),∴A∩B=[1,3)(2)由已知
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 房间改造施工方案(3篇)
- 景区门票销售信息发布制度
- 罕见肿瘤转化医学研究从实验室到临床
- 食品公司规则制度
- 2026广东中山市阜沙镇阜沙中学、阜沙中心小学、牛角小学招聘非编教师7人备考题库及完整答案详解
- 2026年吉安市白鹭洲中学面向高校招聘教师15人备考题库有答案详解
- 2026届山东省济宁市邹城市高二生物第一学期期末预测试题含解析
- 销售奖励政策制度
- 2026天津南开大学部分科研助理岗位招聘备考题库及参考答案详解1套
- 装饰公司收款与财务制度
- 中西医结合诊治妊娠胚物残留专家共识(2024年版)
- 2025-2026学年北京市海淀区初二(上期)期末物理试卷(含答案)
- (正式版)DB51∕T 2732-2025 《用材林培育技术规程 杉木》
- 美容院2025年度工作总结与2026年发展规划
- 2025年12月福建厦门市鹭江创新实验室管理序列岗位招聘8人备考题库必考题
- 高一生物上册期末考试题库含解析及答案
- 收购商场协议书范本
- 干热复合事件对北半球植被的影响及响应机制研究
- 2025年四川单招护理试题及答案
- 钢梁现场安装施工质量通病、原因分析及应对措施
- 儿童肱骨髁上骨折术
评论
0/150
提交评论