毕节市重点中学2026届高二数学第一学期期末统考试题含解析_第1页
毕节市重点中学2026届高二数学第一学期期末统考试题含解析_第2页
毕节市重点中学2026届高二数学第一学期期末统考试题含解析_第3页
毕节市重点中学2026届高二数学第一学期期末统考试题含解析_第4页
毕节市重点中学2026届高二数学第一学期期末统考试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

毕节市重点中学2026届高二数学第一学期期末统考试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.(5分)已知集合A={x|−2<x<4},集合B={x|(x−6)(x+1)<0},则A∩B=A.{x|1<x<4} B.{x|x<4或x>6}C.{x|−2<x<−1} D.{x|−1<x<4}2.为了解义务教育阶段学校对双减政策的落实程度,某市教育局从全市义务教育阶段学校中随机抽取了6所学校进行问卷调查,其中有4所小学和2所初级中学,若从这6所学校中再随机抽取两所学校作进一步调查,则抽取的这两所学校中恰有一所小学的概率是()A. B.C. D.3.在棱长为1的正四面体中,点满足,点满足,当和的长度都为最短时,的值是()A. B.C. D.4.由小到大排列的一组数据:,其中每个数据都小于,另一组数据2、的中位数可以表示为()A. B.C. D.5.若点P是曲线上任意一点,则点P到直线的最小距离为()A.0 B.C. D.6.如图,在棱长为1的正方体中,点B到直线的距离为()A. B.C. D.7.在条件下,目标函数的最大值为2,则的最小值是()A.20 B.40C.60 D.808.己知F为抛物线的焦点,过F作两条互相垂直的直线,,直线与C交于A、B两点,直线与C交于D、E两点,则的最小值为()A.24 B.22C.20 D.169.已知等差数列{an}中,a4+a9=8,则S12=()A.96 B.48C.36 D.2410.已知数列是等比数列,数列是等差数列,若,则()A. B.C. D.11.圆与的公共弦长为()A. B.C. D.12.如图,在平行六面体(底面为平行四边形的四棱柱)中,E为延长线上一点,,则为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知数列的前n项和为,则______14.已知为曲线:上一点,,,则的最小值为______15.已知拋物线的焦点为F,O为坐标原点,M的准线为l且与x轴相交于点B,A为M上的一点,直线AO与直线l相交于C点,若,,则M的标准方程为______________.16.双曲线的左顶点为,虚轴的一个端点为,右焦点到直线的距离为,则双曲线的离心率为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列是递增的等差数列,,若成等比数列.(1)求数列的通项公式;(2)若,数列的前项和,求.18.(12分)某双曲线型自然冷却通风塔的外形是由图1中的双曲线的一部分绕其虚轴所在的直线旋转一周所形成的曲面,如图2所示.双曲线的左、右顶点分别为、.已知该冷却通风塔的最窄处是圆O,其半径为1;上口为圆,其半径为;下口为圆,其半径为;高(即圆与所在平面间的距离)为.(1)求此双曲线的方程;(2)以原平面直角坐标系的基础上,保持原点和x轴、y轴不变,建立空间直角坐标系,如图3所示.在上口圆上任取一点,在下口圆上任取一点.请给出、的值,并求出与的值;(3)在(2)的条件下,是否存在点P、Q,使得P、A、Q三点共线.若不存在,请说明理由;若存在,求出点P、Q的坐标,并证明此时线段PQ上任意一点都在曲面上.19.(12分)已知数列的前n项积,数列为等差数列,且,(1)求与的通项公式;(2)若,求数列的前n项和20.(12分)已知曲线上任意一点满足方程,(1)求曲线的方程;(2)若直线与曲线在轴左、右两侧的交点分别是,且,求的最小值.21.(12分)某莲藕种植塘每年的固定成本是2万元,每年最大规模的种植量是8万千克,每种植1万千克莲藕,成本增加0.5万元.种植万千克莲藕的销售额(单位:万元)是(是常数),若种植2万千克莲藕,利润是1.5万元,求:(1)种植万千克莲藕利润(单位:万元)为的解析式;(2)要使利润最大,每年需种植多少万千克莲藕,并求出利润的最大值.22.(10分)已知函数,(1)求曲线在点处的切线方程;(2)若对任意的,恒成立,求实数的取值范围

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】由(x−6)(x+1)<0,得−1<x<6,从而有B={x|−1<x<6},所以A∩B={x|−1<x<4},故选D2、A【解析】由组合知识结合古典概型概率公式求解即可.【详解】从这6所学校中随机抽取两所学校的情况共有种,这两所学校中恰有一所小学的情况共有种,则其概率为.故选:A3、A【解析】根据给定条件确定点M,N的位置,再借助空间向量数量积计算作答.【详解】因,则,即,而,则共面,点M在平面内,又,即,于是得点N在直线上,棱长为1的正四面体中,当长最短时,点M是点A在平面上的射影,即正的中心,因此,,当长最短时,点N是点D在直线AC上的射影,即正边AC的中点,,而,,所以.故选:A4、C【解析】先根据题意对数据进行排列,然后由中位数的定义求解即可【详解】因为由小到大排列的一组数据:,其中每个数据都小于,所以另一组数据2、从小到大的排列为,所以这一组数的中位数为,故选:C5、D【解析】由导数的几何意义求得曲线上与直线平行的切线方程的切线坐标,求出切点到直线的距离即为所求最小距离【详解】点是曲线上的任意一点,设,令,解得1或(舍去),,∴曲线上与直线平行的切线的切点为,点到直线的最小距离.故选:D.6、A【解析】以为坐标原点,以为单位正交基底,建立空间直角坐标系,取,,利用向量法,根据公式即可求出答案.【详解】以为坐标原点,以为单位正交基底,建立如图所示的空间直角坐标系,则,,取,,则,,则点B到直线AC1的距离为.故选:A7、C【解析】首先画出可行域,找到最优解,得到关系式作为条件,再去求的最小值.【详解】画出的可行域,如下图:由得由得;由得;目标函数取最大值时必过N点,则则(当且仅当时等号成立)故选:C8、A【解析】由抛物线的性质:过焦点的弦长公式计算可得.【详解】设直线,的斜率分别为,由抛物线的性质可得,,所以,又因为,所以,所以,故选:A.9、B【解析】利用等差数列的性质求解即可.【详解】解:由等差数列的性质得.故选:B10、A【解析】结合等差中项和等比中项分别求出和,代值运算化简即可.【详解】由是等比数列可得,是等差数列可得,所以,故选:A11、D【解析】已知两圆方程,可先让两圆方程作差,得到其公共弦的方程,然后再计算圆心到直线的距离,再结合勾股定理即可完成弦长的求解.【详解】已知圆,圆,两圆方程作差,得到其公共弦的方程为::,而圆心到直线的距离为,圆的半径为,所以,所以.故选:D.12、B【解析】根据空间向量运算求得正确答案.【详解】.故选:B二、填空题:本题共4小题,每小题5分,共20分。13、【解析】先通过裂项相消求出,再代入计算即可.【详解】,则,故.故答案为:3.14、【解析】曲线是抛物线的右半部分,是抛物线的焦点,作出抛物线的准线,把转化为到准线的距离,则到准线的距离为所求距离和的最小值【详解】易知曲线是抛物线的右半部分,如图,因为抛物线的准线方程为,是抛物线的焦点,所以等于到直线的距离.过作该直线的垂线,垂足为,则的最小值为故答案为:15、【解析】先利用相似关系计算,求得直线OA的方程,再联立方程求得,利用抛物线定义根据即得p值,即得结果.【详解】因为,,所以,则,如图,,故,解得,所以,直线OA的斜率为,OA的方程,联立直线OA与抛物线方程,解得,所以,故,则抛物线标准方程为.故答案为:.16、【解析】根据双曲线左顶点和虚轴端点的定义,结合点到直线距离公式、双曲线的离心率公式进行求解即可.【详解】不妨设在纵轴的正半轴上,由双曲线的标准方程可知:,右焦点的坐标为,直线的方程为:,因为右焦点到直线的距离为,所以有,即双曲线的离心率为,故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)设等差数列的公差为,根据题意列出方程组,求得的值,即可求解;(2)由(1)求得,结合“裂项法”即可求解.【详解】(1)设等差数列的公差为,因为,若成等比数列,可得,解得,所以数列的通项公式为.(2)由(1)可得,所以.【点睛】关于数列的裂项法求和的基本策略:1、基本步骤:裂项:观察数列的通项,将通项拆成两项之差的形式;累加:将数列裂项后的各项相加;消项:将中间可以消去的项相互抵消,将剩余的有限项相加,得到数列的前项和.2、消项的规律:消项后前边剩几项,后边就剩几项,前边剩第几项,后边就剩倒数第几项.18、(1);(2),,,;(3)存在,或,证明见解析.【解析】(1)设双曲线的标准方程为,易知,设,,代入求解即可;(2)分析圆,圆的方程即可求解;(3)利用圆的参数方程,设,,利用,即可求解,再利用线段PQ上任意一点的特征证明点在曲面上;【小问1详解】设双曲线的标准方程为,由题意知,点,的横坐标分别为,,则设点,的坐标为,,,,,解得,,又塔高米,,解得,故所求的双曲线的方程为【小问2详解】点在圆上,;点在圆上,;圆,其半径为,;圆,其半径为,【小问3详解】存在点P、Q,使得P、A、Q三点共线.由点在半径为的圆上,(为参数);点在半径为的圆上,(为参数);由已知得,整理得两式平方求和得,则或当时,,当时,证明:,则,利用,,其中又曲面上的每一点可以是圆与旋转任意坐标系上的双曲线的交点,旋转直角坐标系,保持原点和y轴不变,点所在的轴为轴,此时,满足,即即点是曲面上的点.19、(1),.(2).【解析】(1)由已知得,,两式相除得,由已知得,求得数列的公差为,由等差数列的通项公式可求得;(2)运用错位相减法可求得.【小问1详解】解:因为数列的前n项积,所以,所以,两式相除得,因为数列为等差数列,且,,所以,即,所以数列的公差为,所以,所以,【小问2详解】解:由(1)得,所以,,所以,所以.20、(1)(2)8【解析】(1)根据双曲线的定义即可得出答案;(2)可设直线的方程为,则直线的方程为,由,求得,同理求得,从而可求得的值,再结合基本不等式即可得出答案.【小问1详解】解:设,则,等价于,曲线为以为焦点的双曲线,且实轴长为2,焦距为,故曲线的方程为:;【小问2详解】解:由题意可得直线的斜率存在且不为0,可设直线的方程为,则直线的方程为,由,得,所以,同理可得,,所以,,当且仅当时取等号,所以当时,取得最小值8.21、(1),;(2)6万千克,万元.【解析】(1)根据题意找等量关系即可求g(x)解析式,根据函数值可求a;(2)根据g(x)导数研究其单调性并求其最大值即可.【小问1详解】种植万千克莲

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论