北京东城55中学2026届高二数学第一学期期末联考模拟试题含解析_第1页
北京东城55中学2026届高二数学第一学期期末联考模拟试题含解析_第2页
北京东城55中学2026届高二数学第一学期期末联考模拟试题含解析_第3页
北京东城55中学2026届高二数学第一学期期末联考模拟试题含解析_第4页
北京东城55中学2026届高二数学第一学期期末联考模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北京东城55中学2026届高二数学第一学期期末联考模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.为了调查全国人口的寿命,抽查了11个省(市)的2500名城镇居民,这2500名城镇居民的寿命的全体是()A.总体 B.个体C.样本 D.样本容量2.两圆x2+y2+4x-4y=0和x2+y2+2x-12=0的公共弦所在直线的方程为()A.x+2y﹣6=0 B.x﹣3y+5=0C.x﹣2y+6=0 D.x+3y﹣8=03.已知双曲线方程为,过点的直线与双曲线只有一个公共点,则符合题意的直线的条数共有()A.4条 B.3条C.2条 D.1条4.已知x>0、y>0,且1,若恒成立,则实数m的取值范围为()A.(1,9) B.(9,1)C.[9,1] D.(∞,1)∪(9,+∞)5.等轴双曲线渐近线是()A. B.C. D.6.在平面直角坐标系xOy中,过x轴上的点P分别向圆和圆引切线,记切线长分别为.则的最小值为()A.2 B.3C.4 D.57.已知点,是椭圆:的左、右焦点,是的左顶点,点在过且斜率为的直线上,为等腰三角形,且,则的离心率为()A. B.C. D.8.已知数列的前n项和为,,,则()A. B.C.1025 D.20499.已知空间三点,,在一条直线上,则实数的值是()A.2 B.4C.-4 D.-210.某公司有320名员工,将这些员工编号为1,2,3,…,320,从这些员工中使用系统抽样的方法抽取20人进行“学习强国”的问卷调查,若54号被抽到,则下面被抽到的是()A.72号 B.150号C.256号 D.300号11.如图,两个半径为R的相交大圆,分别内含一个半径为r的同心小圆,且同心小圆均与另一个大圆外切.已知时,在两相交大圆的区域内随机取一点,则该点取自两大圆公共部分的概率为()A. B.C. D.12.若连续抛掷两次骰子得到的点数分别为m,n,则点P(m,n)在直线x+y=4上的概率是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.曲线围成的图形的面积为___________.14.在空间直角坐标系中,已知向量,则的值为__________.15.一个六棱锥的体积为,其底面是边长为的正六边形,侧棱长都相等,则该六棱锥的侧面积为.16.如图,椭圆的左右焦点为,,以为圆心的圆过原点,且与椭圆在第一象限交于点,若过、的直线与圆相切,则直线的斜率______;椭圆的离心率______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)椭圆C:的左右焦点分别为,,P为椭圆C上一点.(1)当P为椭圆C的上顶点时,求的余弦值;(2)直线与椭圆C交于A,B,若,求k18.(12分)已知函数.(1)当时,求函数的单调区间;(2)若函数在其定义域上是增函数,求实数的取值范围.19.(12分)已知函数在处的切线与直线平行(1)求值,并求此切线方程;(2)证明:20.(12分)已知数列的前n项和为满足(1)求证:是等比数列,并求数列通项公式;(2)若,数列的前项和为.求证:21.(12分)已知函数.(1)求函数f(x)的最小正周期;(2)当时,求函数f(x)的值域.22.(10分)已知椭圆C:,斜率为的直线l与椭圆C交于A、B两点且(1)求椭圆C的离心率;(2)求直线l方程

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】由样本的概念即知.【详解】由题意可知,这2500名城镇居民的寿命的全体是样本.2、C【解析】两圆方程相减得出公共弦所在直线的方程.【详解】两圆方程相减得,即x﹣2y+6=0则公共弦所在直线的方程为x﹣2y+6=0故选:C3、A【解析】利用双曲线渐近线的性质,结合一元二次方程根的判别式进行求解即可.【详解】解:双曲线的渐近线方程为,右顶点为.①直线与双曲线只有一个公共点;②过点平行于渐近线时,直线与双曲线只有一个公共点;③设过的切线方程为与双曲线联立,可得,由,即,解得,直线的条数为1.综上可得,直线的条数为4.故选:A,.4、B【解析】应用基本不等式“1”的代换求的最小值,注意等号成立条件,再根据题设不等式恒成立有,解一元二次不等式求解集即可.【详解】由题设,,当且仅当时等号成立,∴要使恒成立,只需,故,∴.故选:B.5、A【解析】对等轴双曲线的焦点的位置进行分类讨论,可得出等轴双曲线的渐近线方程.【详解】因为,若双曲线的焦点在轴上,则等轴双曲线的渐近线方程为;若双曲线的焦点在轴上,则等轴双曲线的渐近线方程为.综上所述,等轴双曲线的渐近线方程为.故选:A.6、D【解析】利用两点间的距离公式,将切线长的和转化为到两圆心的距离和,利用三点共线距离最小即可求解.详解】,圆心,半径,圆心,半径设点P,则,即到与两点距离之和的最小值,当、、三点共线时,的和最小,即的和最小值为.故选:D【点睛】本题考查了两点间的距离公式,需熟记公式,属于基础题.7、D【解析】设,先求出点,得,化简即得解【详解】由题意可知椭圆的焦点在轴上,如图所示,设,则,∵为等腰三角形,且,∴.过作垂直轴于点,则,∴,,即点.∵点在过点且斜率为的直线上,∴,解得,∴.故选:D【点睛】方法点睛:求椭圆的离心率常用的方法有:(1)公式法(求出椭圆的代入离心率的公式即得解);(2)方程法(通过已知找到关于离心率的方程解方程即得解).8、B【解析】根据题意得,进而根据得数列是等比数列,公比为,首项为,再根据等比数列求和公式求解即可.【详解】解:因为数列的前n项和为满足,所以当时,,解得,当时,,即所以,解得或,因为,所以.所以,,所以当时,,所以,即所以数列是等比数列,公比为,首项为,所以故选:B9、C【解析】根据三点在一条直线上,利用向量共线原理,解出实数的值.【详解】解:因为空间三点,,在一条直线上,所以,故.所以.故选:C.【点睛】本题主要考查向量共线原理,属于基础题.10、B【解析】根据系统抽样分成20个小组,每组16人中抽一人,故抽到的序号相差16的整数倍,即可求解.【详解】∵用系统抽样的方法从320名员工中抽取一个容量为20的样本∴,即每隔16人抽取一人∵54号被抽到∴下面被抽到的是54+16×6=150号,而其他选项中的数字不满足与54相差16的整数倍,故答案为:B故选:B11、C【解析】设D为线段AB的中点,求得,在中,可得.进而求得两大圆公共部分的面积为:,利用几何概型计算即可得出结果.【详解】如图,设D为线段AB的中点,,在中,.两大圆公共部分的面积为:,则该点取自两大圆公共部分的概率为.故选:C.12、D【解析】利用分布计数原理求出所有的基本事件个数,在求出点落在直线x+y=4上包含的基本事件个数,利用古典概型的概率个数求出.解:连续抛掷两次骰子出现的结果共有6×6=36,其中每个结果出现的机会都是等可能的,点P(m,n)在直线x+y=4上包含的结果有(1,3),(2,2),(3,1)共三个,所以点P(m,n)在直线x+y=4上的概率是3:36=1:12,故选D考点:古典概型点评:本题考查先判断出各个结果是等可能事件,再利用古典概型的概率公式求概率,属于基础题二、填空题:本题共4小题,每小题5分,共20分。13、##【解析】曲线围成图形关于轴,轴对称,故只需要求出第一象限的面积即可.【详解】将或代入方程,方程不发生改变,故曲线关于轴,轴对称,因此只需求出第一象限的面积即可.当,时,曲线可化为:,表示的图形为一个半圆,围成的面积为,故曲线围成的图形的面积为.故答案:.14、【解析】由题知,进而根据向量数量积运算的坐标表示求解即可.【详解】解:因为向量,所以,所以故答案为:15、【解析】判断棱锥是正六棱锥,利用体积求出棱锥的高,然后求出斜高,即可求解侧面积∵一个六棱锥的体积为,其底面是边长为2的正六边形,侧棱长都相等,∴棱锥是正六棱锥,设棱锥的高为h,则棱锥斜高为该六棱锥的侧面积为考点:棱柱、棱锥、棱台的体积16、①.②.【解析】根据直角三角形的性质求得,由此求得,结合椭圆的定义求得离心率.【详解】连接,由于是圆的切线,所以.在中,,所以,所以,所以直线的斜率.,根据椭圆的定义可知.故答案为:;【点睛】本小题主要考查椭圆的定义、椭圆的离心率,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)利用余弦定理可求顶角的余弦值.(2)联立直线方程和椭圆方程,消元后利用韦达定理结合弦长公式可求的值.【小问1详解】当为椭圆的上顶点时,,在中,由余弦定理知.【小问2详解】设,,将直线与椭圆:联立得:,因为直线过焦点,故恒成立,又,由弦长公式得,化简整理得:,解得.18、(1)在、上递增,在上递减;(2).【解析】【小问1详解】由题设,且定义域为,则,当或时,;当时,.所以在、上递增,在上递减.【小问2详解】由题设,在上恒成立,所以在上恒成立,当时,满足题设;当时,,可得.综上,.19、(1);;(2)证明见解析.【解析】(1)根据导数几何意义可知,解方程求得,进而得到切线方程;(2)当时,由,知不等式成立;当时,令,利用导数可求得在上单调递增,从而得到,由此可得结论.【小问1详解】,,在处的切线与直线平行,即切线斜率为,,解得:,,,所求切线方程为:,即;【小问2详解】要证,即证;①当时,,,,即,;②当时,令,,,当时,,,,,即,在上单调递增,,在上单调递增,,即在上恒成立;综上所述:.【点睛】思路点睛:本题第二问考查利用导数证明不等式的问题,解题的基本思路是将问题转化为函数最值的求解问题;通过构造函数,利用导数求函数最值的方法可确定恒成立,从而得到所证结论.20、(1)证明见解析,(2)证明见解析【解析】(1)令可求得的值,令,由可得,两式作差可得,利用等比数列的定义可证得结论成立,确定该数列的首项和公比,可求得数列的通项公式;(2)求得,利用错位相减法可求得,结合数列的单调性可证得结论成立.【小问1详解】证明:当时,,解得,当时,由可得,上述两个等式作差得,所以,,则,因为,则,可得,,,以此类推,可知对任意的,,所以,,因此,数列是等比数列,且首项为,公比为,所以,,解得.【小问2详解】证明:,则,其中,所以,数列为单调递减数列,则,,,上式下式,得,所以,,因此,.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论