版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
阿里市2026届数学高二上期末检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知是椭圆上的一点,则点到两焦点的距离之和是()A.6 B.9C.14 D.102.双曲线的左顶点为,右焦点,若直线与该双曲线交于、两点,为等腰直角三角形,则该双曲线离心率为()A. B.C. D.3.设双曲线:的左、右焦点分别为、,P为C上一点,且,,则双曲线的渐近线方程为()A. B.C. D.4.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其意思为:有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地,请问第二天走了()A.192
里 B.96
里C.48
里 D.24
里5.某中学的“希望工程”募捐小组暑假期间走上街头进行了一次募捐活动,共收到捐款1200元.他们第1天只得到10元,之后采取了积极措施,从第2天起,每一天收到的捐款都比前一天多10元.这次募捐活动一共进行的天数为()A.13 B.14C.15 D.166.“圆”是中国文化的一个重要精神元素,在中式建筑中有着广泛的运用,最具代表性的便是园林中的门洞.如图,某园林中的圆弧形挪动高为2.5m,底面宽为1m,则该门洞的半径为()A.1.2m B.1.3mC.1.4m D.1.5m7.某程序框图如图所示,该程序运行后输出的值是()A. B.C. D.8.直线与直线交于点Q,m是实数,O为坐标原点,则的最大值是()A.2 B.C. D.49.设函数,若为奇函数,则曲线在点处的切线方程为()A. B.C. D.10.(5分)已知集合A={x|−2<x<4},集合B={x|(x−6)(x+1)<0},则A∩B=A.{x|1<x<4} B.{x|x<4或x>6}C.{x|−2<x<−1} D.{x|−1<x<4}11.直线与圆的位置关系是()A.相交 B.相切C.相离 D.都有可能12.已知数列的通项公式为,按项的变化趋势,该数列是()A.递增数列 B.递减数列C.摆动数列 D.常数列二、填空题:本题共4小题,每小题5分,共20分。13.已知锐角的内角,,的对边分别为,,,且.若,则外接圆面积的最小值为______14.二项式的展开式中,项的系数为__________.15.已知正方体的棱长为为的中点,为面内一点.若点到面的距离与到直线的距离相等,则三棱锥体积的最小值为__________16.在正项等比数列中,,,则的公比为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)年月日,中国选手杨倩在东京奥运会女子米气步枪决赛由本得冠军,为中国代表团揽入本届奥运会第一枚金牌.受奥运精神的鼓舞,某射击俱乐部组织名射击爱好者进行一系列的测试,并记录他们的射击得分(单位:分),将所得数据整理得到如图所示的频率分布直方图.(1)求频率分布直方图中的值,并估计该名射击爱好者的射击平均得分(求平均值时同一组数据用该组区间的中点值作代表);(2)若采用分层抽样的方法,从得分高于分的射击爱好者中随机抽取人调查射击技能情况,再从这人中随机选取人进行射击训练,求这人中至少有人的分数高于分的概率.18.(12分)在△ABC中,(1)求B的大小;(2)求cosA+cosC的最大值19.(12分)已知点A(0,-2),椭圆E:(a>b>0)的离心率为,F是椭圆E的右焦点,直线AF的斜率为,O为坐标原点.(1)求E的方程;(2)设过点A的动直线l与E相交于P,Q两点.当△OPQ的面积最大时,求l的方程.20.(12分)已知的顶点,边上的中线所在直线方程为,边上的高所在直线方程为.求:(1)顶点的坐标;(2)直线的方程.21.(12分)如图,已知多面体,,,均垂直于平面,,,,(1)证明:平面;(2)求直线平面所成的角的正弦值22.(10分)如图,在平面直角标系中,已知n个圆与x轴和线均相切,且任意相邻的两个圆外切,其中圆.(1)求数列通项公式;(2)记n个圆的面积之和为S,求证:.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据椭圆的定义,可求得答案.【详解】由可知:,由是椭圆上的一点,则点到两焦点的距离之和为,故选:A2、A【解析】求出,分析可得,可得出关于、、的齐次等式,由此可求得该双曲线的离心率的值.【详解】联立,可得,则,易知点、关于轴对称,且为线段的中点,则,又因为为等腰直角三角形,所以,,即,即,所以,,可得,因此,该双曲线的离心率为.故选:A.3、B【解析】根据双曲线定义结合,求得,在中,利用余弦定理求得之间的关系,即可得出答案.【详解】解:因为在双曲线中,因为,所以,所以,在中,,,由余弦定理可得,即,所以,所以,所以,所以双曲线的渐近线方程为.故选:B.4、B【解析】由题可得此人每天走的步数等比数列,根据求和公式求出首项可得.【详解】由题意可知此人每天走的步数构成为公比的等比数列,由题意和等比数列的求和公式可得,解得,第此人第二天走里.故选:B5、C【解析】由题意可得募捐构成了一个以10元为首项,以10元为公差的等差数列,设共募捐了天,然后建立关于的方程,求出即可【详解】由题意可得,第一天募捐10元,第二天募捐20元,募捐构成了一个以10元为首项,以10元为公差的等差数列,根据题意,设共募捐了天,则,解得或(舍去),所以,故选:6、B【解析】设半径为R,根据垂径定理可以列方程求解即可.【详解】设半径为R,,解得,化简得.故选:B.7、B【解析】模拟程序运行后,可得到输出结果,利用裂项相消法即可求出答案.【详解】模拟程序运行过程如下:0),判断为否,进入循环结构,1),判断为否,进入循环结构,2),判断为否,进入循环结构,3),判断为否,进入循环结构,……9),判断为否,进入循环结构,10),判断为是,故输出,故选:B.【点睛】本题主要考查程序框图,考查裂项相消法,难度不大.一般遇见程序框图求输出结果时,常模拟程序运行以得到结论.8、B【解析】求出两直线的交点坐标,结合两点间的距离公式得到,进而可以求出结果.【详解】因为与的交点坐标为所以,当时,,所以的最大值是,故选:B.9、C【解析】利用函数的奇偶性求出,求出函数的导数,根据导数的几何意义,利用点斜式即可求出结果【详解】函数的定义域为,若为奇函数,则则,即,所以,所以函数,可得;所以曲线在点处的切线的斜率为,则曲线在点处的切线方程为,即故选:C10、D【解析】由(x−6)(x+1)<0,得−1<x<6,从而有B={x|−1<x<6},所以A∩B={x|−1<x<4},故选D11、A【解析】求出圆心到直线的距离,然后与圆的半径进行大小比较即可求解.【详解】解:圆的圆心,,因为圆心到直线的距离,所以直线与圆的位置关系是相交,故选:A.12、B【解析】分析的单调性,即可判断和选择.【详解】因为,显然随着的增大,是递增的,故是递减的,则数列是递减数列.故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】利用二倍角公式求出,即可得到,再利用余弦定理及基本不等式求出的取值范围,再利用正弦定理求出外接圆的半径,即可求出外接圆的面积;【详解】解:因为,所以,解得或(舍去).又为锐角三角形,所以.因为,当且仅当时等号成立,所以.外接圆的半径,故外接圆面积的最小值为故答案为:14、80【解析】利用二项式的通项公式进行求解即可.【详解】二项式的通项公式为:,令,所以项的系数为,故答案为:8015、##【解析】由题意可知,点在平面内的轨迹是以为焦点,直线为准线的抛物线,如图在底面建立平面直角坐标系,求出抛物线方程,直线的方程,将直线向抛物线平移,恰好与抛物线相切时,切点为点,此时的面积最小,则三棱锥体积的最小【详解】因为为面内一点,且点到面的距离与到直线的距离相等,所以点在平面内的轨迹是以为焦点,直线为准线的抛物线,如图在底面,以所在的直线为轴,以的中垂线为轴建立平面直角坐标系,则,设抛物线方程为,则,得,所以抛物线方程为,,直线的方程为,即,设与直线平行且与抛物线相切的直线方程为,由,得,由,得,所以与抛物线相切的直线为,此时切点为,且的面积最小,因为点到直线的距离为,所以的面积的最小值为,所以三棱锥体积的最小值为,故答案为:16、3【解析】由题设知等比数列公比,根据已知条件及等比数列通项公式列方程求公比即可.【详解】由题设,等比数列公比,且,所以,可得或(舍),故公比为3.故答案为:3三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),平均分为;(2).【解析】(1)利用频率直方图中所有矩形面积之和为可求得的值,将每个矩形底边的中点值乘以对应矩形的面积,将所得结果全部相加可得平均成绩;(2)分析可知所抽取的人中,成绩在内的有人,分别记为、、、,成绩在内的有人,分别记为、,列举出所有的基本事件,并确定所求事件所包含的基本事件,利用古典概型的概率公式可求得所求事件的概率.【小问1详解】解:根据频率分布直方图得到,解得.这组样本数据平均数为.【小问2详解】解:根据频率分布直方图得到,分数在、内的频率分别为、,所以采用分层抽样的方法从样本中抽取的人,成绩在内的有人,分别记为、、、,成绩在内的有人,分别记为、,记“人中至少有人的分数高于分”为事件.则所有的基本事件有、、、、、、、、、、、、、、,共种.事件包含的基本事件有、、、、、、、、,共种,所以.18、(1)(2)1【解析】(1)由余弦定理及题设得;(2)由(1)知当时,取得最大值试题解析:(1)由余弦定理及题设得,又∵,∴;(2)由(1)知,,因为,所以当时,取得最大值考点:1、解三角形;2、函数的最值.19、(1)(2)【解析】设出,由直线的斜率为求得,结合离心率求得,再由隐含条件求得,即可求椭圆方程;(2)点轴时,不合题意;当直线斜率存在时,设直线,联立直线方程和椭圆方程,由判别式大于零求得的范围,再由弦长公式求得,由点到直线的距离公式求得到的距离,代入三角形面积公式,化简后换元,利用基本不等式求得最值,进一步求出值,则直线方程可求.试题解析:(1)设,因为直线的斜率为,所以,.又解得,所以椭圆的方程为.(2)解:设由题意可设直线的方程为:,联立消去得,当,所以,即或时.所以点到直线的距离所以,设,则,,当且仅当,即,解得时取等号,满足所以的面积最大时直线的方程为:或.【方法点晴】本题主要考查待定系数法求椭圆方程及圆锥曲线求最值,属于难题.解决圆锥曲线中的最值问题一般有两种方法:一是几何意义,特别是用圆锥曲线的定义和平面几何的有关结论来解决,非常巧妙;二是将圆锥曲线中最值问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法,本题(2)就是用的这种思路,利用均值不等式法求三角形最值的.20、(1);(2).【解析】(1)求出直线的方程,然后联立直线、的方程,即可求得点的坐标;(2)设,可求得线段的中点的坐标,将点的坐标代入直线的方程,可求得的值,可得出点的坐标,进而利用直线的斜率和点斜式可得出直线的方程.【小问1详解】解:,所以,而,则,所以直线的方程为,由,解得,所以顶点的坐标为.【小问2详解】解:因为在直线,所以可设,由为线段的中点,所以,将的坐标代入直线的方程,所以,解得,所以.故,故直线的方程为,即.21、(1)证明见解析;(2)【解析】(1)由已知条件可得,,则,,再利用线面垂直的判定定理可证得结论;(2)如图,过点作,交直线于点,连接,可证得平面,从而是与平面所成的角,然后在求解即可【详解】(1)证明:由,,,,得,所以,由由,,,,得,由,得,由,得,所以,故,又,因此平面(2)解如图,过点作,交直线于点,连接由平面,平面,得平面平面,由,得平面,所以是与平面所成的角由,,得,,所以,故因此,直线与平面所成的角的正弦值是【点睛】关键点点睛:此题考查线面垂直的判定和线面角的求法,解题的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026上海华东师范大学附属闵行虹桥学校招聘备考题库及1套参考答案详解
- 2025浙江富浙科技有限公司实习生岗位招聘2人备考题库及一套参考答案详解
- 2026年济宁市任城区教体系统急需紧缺人才招聘备考题库(60名)及一套参考答案详解
- 2026湖南株洲市荷塘区文化路中学教师招聘备考考试试题及答案解析
- 2026广西柳州市妇女儿童发展中心聘用人员招聘1人备考题库(含答案详解)
- 2026福建厦门集美区乐海小学非在编教师招聘1人备考考试题库及答案解析
- 2026山东潍坊东辰育英中学教师招聘9人备考题库及答案详解(易错题)
- 2026年度马鞍山师范高等专科学校面向全省公开选调事业单位工作人员备考考试试题及答案解析
- 2026云南怒江州泸水市人武部招聘2人备考考试试题及答案解析
- 2026年济宁市任城区教体系统急需紧缺人才招聘备考题库(60名)完整答案详解
- 云南省玉溪市2025-2026学年八年级上学期1月期末物理试题(原卷版+解析版)
- 2026年哈尔滨通河县第一批公益性岗位招聘62人考试参考试题及答案解析
- 六年级寒假家长会课件
- 就业协议书解约函模板
- DL-T976-2017带电作业工具、装置和设备预防性试验规程
- 光学下摆抛光技术培训教材
- 建筑材料进场报告
- YY/T 1543-2017鼻氧管
- YS/T 903.1-2013铟废料化学分析方法第1部分:铟量的测定EDTA滴定法
- GB/T 9414.9-2017维修性第9部分:维修和维修保障
- GB/T 21781-2008化学品的熔点及熔融范围试验方法毛细管法
评论
0/150
提交评论