版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
PAGEPAGE30PAGE金属氧化物的制备方法与应用研究文献综述金属氧化物和金属羟基氧化物纳米颗粒由于在催化,吸附,传感,储能和锂离子电池等领域的广泛应用,所以在化学,物理,生物学和材料科学等许多领域中发挥着核心作用ADDINEN.CITEADDINEN.CITE.DATA[\o"Meyer,2012#214"68-70]。然而,相同材料的金属氧化物和金属羟基氧化物纳米颗粒与不同形貌或粒径的金属氧化物和金属羟基氧化物纳米颗粒可能表现出不同的光学、热学、电学和化学性质。因此,要特别注意合成方法的选择,要考虑到所选方法与生成的氧化物和羟基氧化物纳米结构的尺寸,形状和结晶度之间的紧密联系ADDINEN.CITE<EndNote><Cite><Author>Lawrence</Author><Year>2018</Year><RecNum>218</RecNum><DisplayText><styleface="superscript">[71]</style></DisplayText><record><rec-number>218</rec-number><foreign-keys><keyapp="EN"db-id="ax0xfvs58wftsoevfa55vx96praevp9vz2tw">218</key><keyapp="ENWeb"db-id="">0</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Lawrence,MatthewJ.</author><author>Kolodziej,Adam</author><author>Rodriguez,Paramaconi</author></authors></contributors><titles><title>Controllablesynthesisofnanostructuredmetaloxideandoxyhydroxidematerialsviaelectrochemicalmethods</title><secondary-title>CurrentOpinioninElectrochemistry</secondary-title></titles><periodical><full-title>CurrentOpinioninElectrochemistry</full-title></periodical><pages>7-15</pages><volume>10</volume><dates><year>2018</year></dates><isbn>24519103</isbn><urls></urls><electronic-resource-num>10.1016/j.coelec.2018.03.014</electronic-resource-num></record></Cite></EndNote>[\o"Lawrence,2018#218"71]。1.1金属氧化物的制备方法金属氧化物和金属羟基氧化物纳米材料的合成是一个非常热门的研究领域,对新技术的发展和进步有巨大影响。为了从纳米材料中获得所需的性能,控制合成纳米材料的条件显得尤为重要,特别是纳米材料的尺寸和形貌对其性能有非常大的影响。对纳米材料的尺寸、形貌和表面性能的调节起决定性作用的一些重要合成参数是前驱体、退火时间、加热和冷却速度、退火温度、pH值、浓度等。下面总结了几种常见的合成金属氧化物的方法ADDINEN.CITE<EndNote><Cite><Author>Szopa</Author><Year>2009</Year><RecNum>219</RecNum><DisplayText><styleface="superscript">[72]</style></DisplayText><record><rec-number>219</rec-number><foreign-keys><keyapp="EN"db-id="ax0xfvs58wftsoevfa55vx96praevp9vz2tw">219</key><keyapp="ENWeb"db-id="">0</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Szopa,Jan</author><author>Wróbel-Kwiatkowska,Magdalena</author><author>Kulma,Anna</author><author>Zuk,Magdalena</author><author>Skórkowska-Telichowska,Katarzyna</author><author>Dymińska,Lucyna</author><author>Mączka,Mirosław</author><author>Hanuza,Jerzy</author><author>Zebrowski,Jacek</author><author>Preisner,Marta</author></authors></contributors><titles><title>Chemicalcompositionandmolecularstructureoffibersfromtransgenicflaxproducingpolyhydroxybutyrate,andmechanicalpropertiesandplateletaggregationofcompositematerialscontainingthesefibers</title><secondary-title>CompositesScienceandTechnology</secondary-title></titles><periodical><full-title>CompositesScienceandTechnology</full-title></periodical><pages>2438-2446</pages><volume>69</volume><number>14</number><dates><year>2009</year></dates><isbn>02663538</isbn><urls></urls><electronic-resource-num>10.1016/pscitech.2009.06.017</electronic-resource-num></record></Cite></EndNote>[\o"Szopa,2009#219"72]。(1)溶剂-凝胶法纳米材料的溶胶-凝胶合成技术是通过溶胶(固体颗粒的胶体悬浮液)和凝胶(3D连续固体多孔网络)的协同作用形成无机网络而进行的。纳米领域中粒子的形成需要严格控制成核和生长动力学,但是这些步骤在溶胶-凝胶过程中很难获得,因为通过水解和缩合形成溶胶和凝胶的过程很复杂。溶胶-凝胶工艺的复杂性主要是由于工艺参数众多,需要在微观水平上进行控制,以提供良好的重现性。其中包括水解、缩合反应动力学、溶液pH值、反应时间、反应温度、催化剂浓度等ADDINEN.CITE<EndNote><Cite><Author>Gupta</Author><Year>2020</Year><RecNum>221</RecNum><DisplayText><styleface="superscript">[73]</style></DisplayText><record><rec-number>221</rec-number><foreign-keys><keyapp="EN"db-id="ax0xfvs58wftsoevfa55vx96praevp9vz2tw">221</key><keyapp="ENWeb"db-id="">0</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Gupta,SantoshK.</author><author>Mao,Yuanbing</author></authors></contributors><titles><title>Areviewonmoltensaltsynthesisofmetaloxidenanomaterials:Status,opportunity,andchallenge</title><secondary-title>ProgressinMaterialsScience</secondary-title></titles><periodical><full-title>ProgressinMaterialsScience</full-title></periodical><pages>100734</pages><dates><year>2020</year></dates><isbn>00796425</isbn><urls></urls><electronic-resource-num>10.1016/j.pmatsci.2020.100734</electronic-resource-num></record></Cite></EndNote>[\o"Gupta,2020#221"73]。(2)聚合物前驱体法聚合物前驱体合成纳米材料的方法是基于Pechini型反应路线,聚合凝胶是由柠檬酸(络合剂)、乙二醇(稳定剂)和金属离子前驱体的化学反应形成的。在这个反应中,金属离子在聚合物凝胶中被固定,最后在加热时被点燃。该合成方法的一些最重要的优点是合成温度低、产物形成均匀、亚稳相稳定等;同时该方法也有一些缺点,如使用复杂的化学品,在少数情况下很难维持化学计量,有时很难找到合适的化学前驱体等ADDINEN.CITE<EndNote><Cite><Author>Gupta</Author><Year>2020</Year><RecNum>221</RecNum><DisplayText><styleface="superscript">[73]</style></DisplayText><record><rec-number>221</rec-number><foreign-keys><keyapp="EN"db-id="ax0xfvs58wftsoevfa55vx96praevp9vz2tw">221</key><keyapp="ENWeb"db-id="">0</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Gupta,SantoshK.</author><author>Mao,Yuanbing</author></authors></contributors><titles><title>Areviewonmoltensaltsynthesisofmetaloxidenanomaterials:Status,opportunity,andchallenge</title><secondary-title>ProgressinMaterialsScience</secondary-title></titles><periodical><full-title>ProgressinMaterialsScience</full-title></periodical><pages>100734</pages><dates><year>2020</year></dates><isbn>00796425</isbn><urls></urls><electronic-resource-num>10.1016/j.pmatsci.2020.100734</electronic-resource-num></record></Cite></EndNote>[\o"Gupta,2020#221"73]。(3)煅烧法煅烧合成在纳米材料的合成中也得到了广泛的应用,它基本上包括两个步骤:前驱体的形成和自燃过程。在煅烧合成中,产物的形成是通过金属离子前驱体(大部分是水溶性的)和燃料(柠檬酸、甘氨酸、尿素等)之间的放热反应进行的,放热反应产生足够的热量进行燃烧反应,燃烧热推动着反应进行。我们可以通过改变燃料与氧化剂的比例来调整所合成的材料的大小,因此燃料的选择和组成是非常重要的。该方法的优点是需要的热能少,可以通过改变燃料与氧化剂的比例来控制材料颗粒的大小;该方法最大的缺点就是安全系数较低ADDINEN.CITE<EndNote><Cite><Author>Aruna</Author><Year>2008</Year><RecNum>223</RecNum><DisplayText><styleface="superscript">[74]</style></DisplayText><record><rec-number>223</rec-number><foreign-keys><keyapp="EN"db-id="ax0xfvs58wftsoevfa55vx96praevp9vz2tw">223</key><keyapp="ENWeb"db-id="">0</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Aruna,SinganahallyT.</author><author>Mukasyan,AlexanderS.</author></authors></contributors><titles><title>Combustionsynthesisandnanomaterials</title><secondary-title>CurrentOpinioninSolidStateandMaterialsScience</secondary-title></titles><periodical><full-title>CurrentOpinioninSolidStateandMaterialsScience</full-title></periodical><pages>44-50</pages><volume>12</volume><number>3-4</number><dates><year>2008</year></dates><isbn>13590286</isbn><urls></urls><electronic-resource-num>10.1016/j.cossms.2008.12.002</electronic-resource-num></record></Cite></EndNote>[\o"Aruna,2008#223"74]。(4)电化学法电化学方法合成纳米金属氧化物是一种简单,快速,成本低的方法,通常涉及两电极或三电极体系的组装。金属氧化物纳米材料可通过控制电化学的电势或电流直接在电极表面上获得,可以使用电化学技术合成金属氧化物纳米材料,包括循环伏安法(CV),计时电流法(CA),计时电位法(CP),计时电容法(CC)和固定电势或变化电势的脉冲电沉积法ADDINEN.CITE<EndNote><Cite><Author>Maduraiveeran</Author><Year>2019</Year><RecNum>313</RecNum><DisplayText><styleface="superscript">[75]</style></DisplayText><record><rec-number>313</rec-number><foreign-keys><keyapp="EN"db-id="ax0xfvs58wftsoevfa55vx96praevp9vz2tw">313</key><keyapp="ENWeb"db-id="">0</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Maduraiveeran,Govindhan</author><author>Sasidharan,Manickam</author><author>Jin,Wei</author></authors></contributors><titles><title>Earth-abundanttransitionmetalandmetaloxidenanomaterials:Synthesisandelectrochemicalapplications</title><secondary-title>ProgressinMaterialsScience</secondary-title></titles><periodical><full-title>ProgressinMaterialsScience</full-title></periodical><pages>100574</pages><volume>106</volume><dates><year>2019</year></dates><isbn>00796425</isbn><urls></urls><electronic-resource-num>10.1016/j.pmatsci.2019.100574</electronic-resource-num></record></Cite></EndNote>[\o"Maduraiveeran,2019#313"75]。(5)水热合成/溶剂热法水热合成/溶剂热法指的是在高温高压下直接从溶液中合成化合物,最终产物的大小和稳定性在很大程度上取决于反应时间,反应温度和溶剂的pH值。将水热合成法与微波、超声、电磁辐射等结合在一起,可显著提高水热过程的反应速率。水热合成法也有一些缺点,比如合成步骤多,有机溶剂用量大等这会增加合成的成本以及对环境造成一定的污染ADDINEN.CITE<EndNote><Cite><Author>Srivastava</Author><Year>2012</Year><RecNum>225</RecNum><DisplayText><styleface="superscript">[76]</style></DisplayText><record><rec-number>225</rec-number><foreign-keys><keyapp="EN"db-id="ax0xfvs58wftsoevfa55vx96praevp9vz2tw">225</key><keyapp="ENWeb"db-id="">0</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Srivastava,Richa</author></authors></contributors><titles><title>SynthesisandCharacterizationTechniquesofNanomaterials</title><secondary-title>InternationalJournalofGreenNanotechnology</secondary-title></titles><periodical><full-title>InternationalJournalofGreenNanotechnology</full-title></periodical><pages>17-27</pages><volume>4</volume><number>1</number><dates><year>2012</year></dates><isbn>1943-0892 1943-0906</isbn><urls></urls><electronic-resource-num>10.1080/19430892.2012.654738</electronic-resource-num></record></Cite></EndNote>[\o"Srivastava,2012#225"76]。1.2金属氧化物的应用金属氧化物在传感器,催化剂,吸附剂,能量存储等中被广泛应用,研究者已经对其进行了广泛的研究ADDINEN.CITE<EndNote><Cite><Author>Pinna</Author><Year>2008</Year><RecNum>312</RecNum><DisplayText><styleface="superscript">[77]</style></DisplayText><record><rec-number>312</rec-number><foreign-keys><keyapp="EN"db-id="ax0xfvs58wftsoevfa55vx96praevp9vz2tw">312</key><keyapp="ENWeb"db-id="">0</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Pinna,Nicola</author><author>Niederberger,Markus</author></authors></contributors><titles><title>Surfactant‐FreeNonaqueousSynthesisofMetalOxideNanostructures</title><secondary-title>AngewandteChemieInternationalEdition</secondary-title></titles><periodical><full-title>AngewandteChemieInternationalEdition</full-title></periodical><pages>5292-5304</pages><volume>47</volume><number>29</number><dates><year>2008</year></dates><isbn>14337851 15213773</isbn><urls></urls><electronic-resource-num>10.1002/anie.200704541</electronic-resource-num></record></Cite></EndNote>[\o"Pinna,2008#312"77]。(1)传感器具有不同形貌和尺寸的金属氧化物已经被发现并且用于传感器中,如ZrO2纳米片、SnO2纳米八面体、TiO2纳米管。金属氧化物在电化学传感器的构建和电分析性能的提升中起了重要作用,它们的独特性能为将环境元件与换能器接口以进行信号放大提供了有趣的平台ADDINEN.CITE<EndNote><Cite><Author>Yu</Author><Year>2014</Year><RecNum>314</RecNum><DisplayText><styleface="superscript">[78]</style></DisplayText><record><rec-number>314</rec-number><foreign-keys><keyapp="EN"db-id="ax0xfvs58wftsoevfa55vx96praevp9vz2tw">314</key><keyapp="ENWeb"db-id="">0</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Yu,Xin-Yao</author><author>Liu,Zhong-Gang</author><author>Huang,Xing-Jiu</author></authors></contributors><titles><title>Nanostructuredmetaloxides/hydroxides-basedelectrochemicalsensorformonitoringenvironmentalmicropollutants</title><secondary-title>TrendsinEnvironmentalAnalyticalChemistry</secondary-title></titles><periodical><full-title>TrendsinEnvironmentalAnalyticalChemistry</full-title></periodical><pages>28-35</pages><volume>3-4</volume><dates><year>2014</year></dates><isbn>22141588</isbn><urls></urls><electronic-resource-num>10.1016/j.teac.2014.07.001</electronic-resource-num></record></Cite></EndNote>[\o"Yu,2014#314"78]。Huang等通过水热合成法合成了SnO2纳米八面体(如图1-6所示),首次将它用于检测典型环境有机物-萘酚,检出限低至5nMADDINEN.CITE<EndNote><Cite><Author>Huang</Author><Year>2012</Year><RecNum>315</RecNum><DisplayText><styleface="superscript">[79]</style></DisplayText><record><rec-number>315</rec-number><foreign-keys><keyapp="EN"db-id="ax0xfvs58wftsoevfa55vx96praevp9vz2tw">315</key><keyapp="ENWeb"db-id="">0</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Huang,Xiaofeng</author><author>Zhao,Guohua</author><author>Liu,Meichuan</author><author>Li,Fengting</author><author>Qiao,Junlian</author><author>Zhao,Sichen</author></authors></contributors><titles><title>Highlysensitiveelectrochemicaldeterminationof1-naphtholbasedonhigh-indexfacetSnO2modifiedelectrode</title><secondary-title>ElectrochimicaActa</secondary-title></titles><periodical><full-title>ElectrochimicaActa</full-title></periodical><pages>478-484</pages><volume>83</volume><dates><year>2012</year></dates><isbn>00134686</isbn><urls></urls><electronic-resource-num>10.1016/j.electacta.2012.08.008</electronic-resource-num></record></Cite></EndNote>[\o"Huang,2012#315"79]。图1-6HIFSnO2纳米八面体(A)和nHIFSnO2纳米粒子(B)的SEM图[79]Figure1-6.SEMimagesofHIFSnO2nanooctahedron(A)andnHIFSnO2nanoparticles(B);(2)催化剂基于金属氧化物的催化剂进行的非均相催化(如费托过程)和化学工业中的烷基化和酯交换反应以及环境应用(如挥发性有机化合物的氧化和NOx的还原)是最重要的反应过程。Zhou等在碱性水溶液中以不同的温度合成了不同形貌的纳米CeO2催化剂,研究了所制备的纳米CeO2催化剂对乙醇在空气中催化氧化的催化性能,研究结果表明不同形貌的CeO2对乙醇氧化转化率不同ADDINEN.CITE<EndNote><Cite><Author>Zhou</Author><Year>2014</Year><RecNum>316</RecNum><DisplayText><styleface="superscript">[80]</style></DisplayText><record><rec-number>316</rec-number><foreign-keys><keyapp="EN"db-id="ax0xfvs58wftsoevfa55vx96praevp9vz2tw">316</key><keyapp="ENWeb"db-id="">0</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Zhou,Guilin</author><author>Gui,Baoguo</author><author>Xie,Hongmei</author><author>Yang,Fang</author><author>Chen,Yong</author><author>Chen,Shengming</author><author>Zheng,Xuxu</author></authors></contributors><titles><title>InfluenceofCeO2morphologyonthecatalyticoxidationofethanolinair</title><secondary-title>JournalofIndustrialandEngineeringChemistry</secondary-title></titles><periodical><full-title>JournalofIndustrialandEngineeringChemistry</full-title></periodical><pages>160-165</pages><volume>20</volume><number>1</number><dates><year>2014</year></dates><isbn>1226086X</isbn><urls></urls><electronic-resource-num>10.1016/j.jiec.2013.04.012</electronic-resource-num></record></Cite></EndNote>[\o"Zhou,2014#316"80]。(3)超级电容器与传统的碳材料相比,金属氧化物不仅能够为超级电容器提供更高的能量密度,而且比聚合物材料具有更好的电化学稳定性ADDINEN.CITE<EndNote><Cite><Author>Delbari</Author><Year>2021</Year><RecNum>317</RecNum><DisplayText><styleface="superscript">[81]</style></DisplayText><record><rec-number>317</rec-number><foreign-keys><keyapp="EN"db-id="ax0xfvs58wftsoevfa55vx96praevp9vz2tw">317</key><keyapp="ENWeb"db-id="">0</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Delbari,SeyedAli</author><author>Ghadimi,LalehSaleh</author><author>Hadi,Raha</author><author>Farhoudian,Sana</author><author>Nedaei,Maryam</author><author>Babapoor,Aziz</author><author>SabahiNamini,Abbas</author><author>Le,QuyetVan</author><author>Shokouhimehr,Mohammadreza</author><author>ShahediAsl,Mehdi</author><author>Mohammadi,Mohsen</author></authors></contributors><titles><title>Transitionmetaloxide-basedelectrodematerialsforflexiblesupercapacitors:Areview</title><secondary-title>JournalofAlloysandCompounds</secondary-title></titles><periodical><full-title>JournalofAlloysandCompounds</full-title></periodical><pages>158281</pages><volume>857</volume><dates><year>2021</year></dates><isbn>09258388</isbn><urls></urls><electronic-resource-num>10.1016/j.jallcom.2020.158281</electronic-resource-num></record></Cite></EndNote>[\o"Delbari,2021#317"81]。Ghorbani等采用简单、低成本的溶胶-凝胶法制备了一种用于柔性超级电容器的独立夹层型ZnO/rGO/ZnO纸柔性电极(图1-7是制备原理图)。电化学阻抗谱,恒电流充放电和循环伏安法的结果证实,ZnO的加入提高了rGO电极的电容性能ADDINEN.CITE<EndNote><Cite><Author>Ghorbani</Author><Year>2017</Year><RecNum>318</RecNum><DisplayText><styleface="superscript">[82]</style></DisplayText><record><rec-number>318</rec-number><foreign-keys><keyapp="EN"db-id="ax0xfvs58wftsoevfa55vx96praevp9vz2tw">318</key><keyapp="ENWeb"db-id="">0</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Ghorbani,Mina</author><author>Golobostanfard,MohammadReza</author><author>Abdizadeh,Hossein</author></authors></contributors><titles><title>FlexiblefreestandingsandwichtypeZnO/rGO/ZnOelectrodeforwearablesupercapacitor</title><secondary-title>AppliedSurfaceScience</secondary-title></titles><periodical><full-title>AppliedSurfaceScience</full-title></periodical><pages>277-285</pages><volume>419</volume><dates><year>2017</year></dates><isbn>01694332</isbn><urls></urls><electronic-resource-num>10.1016/j.apsusc.2017.05.060</electronic-resource-num></record></Cite></EndNote>[\o"Ghorbani,2017#318"82]。图1-7溶胶-凝胶浸渍法合成夹层ZnO/rGO/ZnO纸的原理图[82]Figure1-7.SchematicillustrationofsynthesisofsandwichZnO/rGO/ZnOpaperbysol-geldip
coatingmethod.(4)锂离子电池Rui等人通过简单的液体剥离技术,成功合成了厚度为2.1-3.8nm的V2O5纳米片(图1-8是合成示意图),由于这种超薄厚度提供了非常短的扩散路径,独特的纳米结构允许锂离子和电子的高速率传输,从而使锂离子阴极具有出色的能量和功率密度ADDINEN.CITE<EndNote><Cite><Author>Rui</Author><Year>2013</Year><RecNum>319</RecNum><DisplayText><styleface="superscript">[83]</style></DisplayText><record><rec-number>319</rec-number><foreign-keys><keyapp="EN"db-id="ax0xfvs58wftsoevfa55vx96praevp9vz2tw">319</key><keyapp="ENWeb"db-id="">0</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Rui,Xianhong</author><author>Lu,Ziyang</author><author>Yu,Hong</author><author>Yang,Dan</author><author>Hng,HueyHoon</author><author>Lim,TutiMariana</author><author>Yan,Qingyu</author></authors></contributors><titles><title>UltrathinV2O5nanosheetcathodes:realizingultrafastreversiblelithiumstorage</title><secondary-title>Nanoscale</secondary-title></titles><periodical><full-title>Nanoscale</full-title><abbr-1>Nanoscale</abbr-1></periodical><pages>556-560</pages><volume>5</volume><number>2</number><dates><year>2013</year></dates><isbn>2040-3364 2040-3372</isbn><urls></urls><electronic-resource-num>10.1039/c2nr33422d</electronic-resource-num></record></Cite></EndNote>[\o"Rui,2013#319"83]。图1-8层状体V2O5剥离成{001}取向的低层V2O5纳米片[83]Figure1-8.ExfoliationoflayeredbulkV2O5into{001}-orientedfew-layerV2O5nanosheets.参考文献[1] KasongaTK,CoetzeeMAA,KamikaI,etal.Endocrine-disruptivechemicalsascontaminantsofemergingconcerninwastewaterandsurfacewater:Areview[J].JournalofEnvironmentalManagement,2021,277,111485.[2] VieiraWT,deFariasMB,SpaolonziMP,etal.Endocrine-disruptingcompounds:Occurrence,detectionmethods,effectsandpromisingtreatmentpathways—Acriticalreview[J].JournalofEnvironmentalChemicalEngineering,2020,104558.[3] HerseyM,BergerSN,HolmesJ,etal.Recentdevelopmentsincarbonsensorsforat-sourceelectroanalysis[J].AnalyticalChemistry,2018,91(1):27-43.[4] RichardsonSD,KimuraSY.Wateranalysis:Emergingcontaminantsandcurrentissues[J].AnalyticalChemistry,2019,92(1):473-505.[5] WangQ,XueQ,ChenT,etal.Recentadvancesinelectrochemicalsensorsforantibioticsandtheirapplications[J].ChineseChemicalLetters,2020,143129.[6] VeiterL,RajamanickamV,HerwigC.Thefilamentousfungalpellet—relationshipbetweenmorphologyandproductivity[J].AppliedMicrobiologyandBiotechnology,2018,102(7):2997-3006.[7] LocatelliM,SciasciaF,CifelliR,etal.Analyticalmethodsfortheendocrinedisruptorcompoundsdeterminationinenvironmentalwatersamples[J].JournalofChromatographyA,2016,1434,1-18.[8] SalehiASM,YangSO,EarlCC,etal.Biosensingestrogenicendocrinedisruptorsinhumanbloodandurine:Arapidcell-freeproteinsynthesisapproach[J].ToxicologyandAppliedPharmacology,2018,345,19-25.[9] KabirE
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 仓储物流题库及答案
- 哲学教育考试试题及答案
- 古代玄学考试试题及答案
- 故宫问题面试试题及答案
- 肿瘤内科考试题库及答案
- 注册城乡规划师考试模拟试题附答案
- 维修工岗位培训试题附答案
- 2025年中式烹调师初级工理论知识考试试题库及答案
- 《建筑识图与构造》习题库(含参考答案)
- 经济师(中级)金融专业知识试题及答案
- 体温单模板完整版本
- 武汉市2024届高中毕业生二月调研考试(二调)英语试卷(含答案)
- 天然美肌无添加的护肤品
- 《正常人体形态学》考试复习题库大全(含答案)
- 湖南省长沙市外国语学校 2021-2022学年高一数学文模拟试卷含解析
- 3D车载盖板玻璃项目商业计划书
- 阿米巴经营管理培训课件
- 我国的宗教政策-(共38张)专题培训课件
- 铝材厂煲模作业指导书
- 【行测题库】图形推理题库
- GB/T 43293-2022鞋号
评论
0/150
提交评论