版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届河北省张家口市尚义县第一中学高一上数学期末学业水平测试模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数的图象,给出以下四个论断①的图象关于直线对称②图象的一个对称中心为③在区间上是减函数④可由向左平移个单位以上四个论断中正确的个数为()A.3 B.2C.1 D.02.已知函数的定义域是且满足如果对于,都有不等式的解集为A. B.C. D.3.终边在x轴上的角的集合为()A. B.C. D.4.已知直线与直线平行,则的值为A.1 B.-1C.0 D.-1或15.已知集合A={1,2,3},集合B={x|x2=x},则A∪B=()A.{1} B.{1,2}C.{0,1,2,3} D.{-1,0,1,2,3}6.已知函数则函数值域是()A. B.C. D.7.已知三条不重合的直线,,,两个不重合的平面,,有下列四个命题:①若,,则;②若,,且,则;③若,,,,则;④若,,,,则.其中正确命题的个数为A. B.C. D.8.函数,对任意的非零实数,关于的方程的解集不可能是A B.C. D.9.某工厂设计了一款纯净水提炼装置,该装置可去除自来水中的杂质并提炼出可直接饮用的纯净水,假设该装置每次提炼能够减少水中50%的杂质,要使水中的杂质不超过原来的4%,则至少需要提炼的次数为()(参考数据:取)A.5 B.6C.7 D.810.下列函数中,是偶函数且值域为的是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知角的终边经过点,则__12.已知函数,若函数有3个零点,则实数a的取值范围是_______.13.已知在上单调递增,则的范围是_____14.函数的值域是__________.15.已知两点,,以线段为直径的圆经过原点,则该圆的标准方程为____________.16.已知,则_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,函数.(Ⅰ)当时,解不等式;(Ⅱ)若关于的方程的解集中恰有一个元素,求的取值范围;(Ⅲ)设,若对任意,函数在区间上的最大值与最小值的和不大于,求的取值范围.18.已知函数(1)求的单调递增区间;(2)求在区间上的值域19.已知函数的部分图象如图所示(1)求的解析式;(2)将图象上所有点的横坐标缩短为原来的(纵坐标不变),再将所得图象向右平移个单位长度,得到函数的图象.若在区间上不单调,求的取值范围20.用定义法证明函数在上单调递增21.已知,,.(1)求,的值;(2)若,求值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】利用代入检验法可判断①②③的正误,利用图象变换可判断④的正误.【详解】,故的图象关于直线对称,故①正确.,故的图象的对称中心不是,故②错误.,当,,而在为减函数,故在为减函数,故③正确.向左平移个单位后所得图象对应的解析式为,当时,此函数的函数值为,而,故与不是同一函数,故④错误.故选:B.2、D【解析】令x=,y=1,则有f()=f()+f(1),故f(1)=0;令x=,y=2,则有f(1)=f()+f(2),解得,f(2)=﹣1,令x=y=2,则有f(4)=f(2)+f(2)=﹣2;∵对于0<x<y,都有f(x)>f(y),∴函数f(x)是定义在(0,+∞)上的减函数,故f(﹣x)+f(3﹣x)≥﹣2可化为f(﹣x(3﹣x))≥f(4),故,解得,﹣1≤x<0.∴不等式的解集为故选D点睛:本题重点考查了抽象函数的性质及应用,的原型函数为的原型函数为,.3、B【解析】利用任意角的性质即可得到结果【详解】终边在x轴上,可能为x轴正半轴或负半轴,所以可得角,故选B.【点睛】本题考查任意角的定义,属于基础题.4、A【解析】由于直线l1:ax+y-1=0与直线l2:x+ay+=0平行所以,即-1或1,经检验成立.故选A.5、C【解析】求出集合B={0,1},然后根据并集的定义求出A∪B【详解】解:∵集合A={1,2,3},集合B={x|x2=x}={0,1},∴A∪B={0,1,2,3}故选C【点睛】本题考查并集的求法,是基础题,解题时要认真审题6、B【解析】结合分段函数的单调性来求得的值域.【详解】当吋,单调递增,值域为;当时,单调递增,值域为,故函数值域为.故选:B7、B【解析】当在平面内时,,①错误;两个平面的垂线平行,且两个平面不重合,则两个平面平行,②正确;③中,当时,平面可能相交,③错误;④正确.故选B.考点:空间线面位置关系.8、D【解析】由题意得函数图象的对称轴为设方程的解为,则必有,由图象可得是平行于x轴的直线,它们与函数的图象必有交点,由函数图象的对称性得的两个解要关于直线对称,故可得;同理方程的两个解也要关于直线对称,同理从而可得若关于的方程有一个正根,则方程有两个不同的实数根;若关于的方程有两个正根,则方程有四个不同的实数根综合以上情况可得,关于的方程的解集不可能是.选D非选择题9、A【解析】根据题意列出相应的不等式,利用对数值计算可得答案.【详解】设经过次提炼后,水中的杂质不超过原来的4%,由题意得,得,所以至少需要5次提炼,故选:A.10、D【解析】分别判断每个选项函数的奇偶性和值域即可.【详解】对A,,即值域为,故A错误;对B,的定义域为,定义域不关于原点对称,不是偶函数,故B错误;对C,的定义域为,定义域不关于原点对称,不是偶函数,故C错误;对D,的定义域为,,故是偶函数,且,即值域为,故D正确.故选:D.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据终边上的点可得,再应用差角正弦公式求目标式的值.【详解】由题设,,所以.故答案为:.12、(0,1]【解析】先作出函数f(x)图象,根据函数有3个零点,得到函数f(x)的图象与直线y=a有三个交点,结合图象即可得出结果【详解】由题意,作出函数的图象如下:因为函数有3个零点,所以关于x的方程f(x)﹣a=0有三个不等实根;即函数f(x)的图象与直线y=a有三个交点,由图象可得:0<a≤1故答案为:(0,1]【点睛】本题主要考查函数的零点,灵活运用数形结合的思想是求解的关键13、【解析】令,利用复合函数的单调性分论讨论函数的单调性,列出关于的不等式组,求解即可.【详解】令当时,由题意知在上单调递增且对任意的恒成立,则,无解;当时,由题意知在上单调递减且对任意的恒成立,则,解得.故答案为:【点睛】本题考查对数型复合函数的单调性,同增异减,求解时注意对数函数的定义域,属于基础题.14、【解析】首先换元,再利用三角变换,将函数转化为关于二次函数,再求值域.【详解】设,因为,所以,则,,当时,函数取得最小值,当时,函数取得最大值,所以函数的值域是故答案为:15、【解析】由以线段为直径的圆经过原点,则可得,求得参数的值,然后由中点坐标公式求所求圆的圆心,用两点距离公式求所求圆的直径,再运算即可.【详解】解:由题意有,,又以线段为直径的圆经过原点,则,则,解得,即,则的中点坐标为,即为,又,即该圆的标准方程为,故答案为.【点睛】本题考查了圆的性质及以两定点为直径的圆的方程的求法,重点考查了运算能力,属基础题.16、【解析】直接利用二倍角的余弦公式求得cos2a的值【详解】∵.故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ);(Ⅲ).【解析】(Ⅰ)当时,利用对数函数的单调性,直接解不等式即可;(Ⅱ)化简关于的方程,通过分离变量推出的表达式,通过解集中恰有一个元素,利用二次函数的性质,即可求的取值范围;(Ⅲ)在上单调递减利用复合函数的单调性求解函数的最值,令,化简不等式,转化求解不等式的最大值,然后推出的范围.【详解】(Ⅰ)当时,,∴,整理得,解得.所以原不等式的解集为.(Ⅱ)方程,即为,∴,∴,令,则,由题意得方程在上只有一解,令,,转化为函数与的图象在上只有一个交点.则分别作出函数与的图象,如图所示结合图象可得,当或时,直线y=a和的图象只有一个公共点,即方程只有一个解所以实数范围为.(Ⅲ)因为函数在上单调递减,所以函数定义域内单调递减,所以函数在区间上的最大值为,最小值为,所以由题意得,所以恒成立,令,所以恒成立,因为在上单调递增,所以∴,解得,又,∴所以实数的取值范围是.【点睛】解答此类题时注意以下几点:(1)对于复合函数的单调性,可根据“同增异减”的方法进行判断;(2)已知方程根的个数(函数零点的个数)求参数范围时,可通过解方程的方法求解,对于无法解方程的,可通过分离、构造函数的方法转化为函数图象公共点个数的问题处理(3)解不等式的恒成立问题时,通常采取分离参数的方法,将问题转化为求函数的最值的问题18、(1);(2)【解析】(1)利用两角差余弦和诱导公式化简f(x),再求单调区间即可;(2)由结合三角函数性质求值域即可详解】(1)令,得,的单调递增区间为;(2)由得,故而【点睛】本题考查三角恒等变换,三角函数单调性及值域问题,熟记公式准确计算是关键,是基础题19、(1);(2)【解析】(1)利用最值求出,根据得出,再由特殊值求出即可求解.(2)根据三角函数的图象变换得出,再由正弦函数在上单调即可求解.【详解】解:(1)由图可知,最小正周期,所以因为,所以,,,又,所以,故(2)由题可知,当时,因为在区间上不单调,所以
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 临汾市2025年度市级机关公开遴选公务员参考题库附答案
- 月湖区区属事业单位公开选调工作人员【12人】考试备考题库附答案
- 苍溪县2026年上半年机关事业单位公开考调工作人员的(80人)参考题库附答案
- 2025广东东莞市第一市区人民检察院劳动合同制司法辅助人员招聘30人备考题库必考题
- 2025西藏日喀则市江孜县司法局补聘专职人民调解员1人备考题库附答案
- 2026江苏泰州泰兴农村商业银行招聘80人参考题库必考题
- 2025金华磐安县纪委监委公开选调工作人员2人备考题库必考题
- 浙江国企招聘-2025台州市椒江工业投资集团有限公司公开招聘工作人员7人的参考题库附答案
- 经济师考试中级经济基础真题模拟及答案
- 白银市辅警考试题库2025
- 2025年江苏南京市建邺区招聘第一批购岗人员5人笔试模拟试题及答案详解1套
- 市场保洁管理方案(3篇)
- 医院调料杂粮副食品采购项目方案投标文件(技术方案)
- 静脉给药的安全管理
- 银行从业者观《榜样》心得体会
- 农村年底活动方案
- 2024届山东省威海市高三二模数学试题(解析版)
- 设备管理奖罚管理制度
- LINE6效果器HD300中文说明书
- 2025年航运行业安全生产费用提取和使用计划
- 纳米纤维凝胶隔热材料的应用研究进展
评论
0/150
提交评论